6 research outputs found

    Unique V3 Loop Sequence Derived from the R2 Strain of HIV-Type 1 Elicits Broad Neutralizing Antibodies

    Get PDF
    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies. In this study, DNA vaccines were constructed to express the gp120 subunit of Env from the isolate HIV-1R2 using both wild-type and codon- ptimized gene sequences. Three copies of the murine C3d were added to the carboxyl terminus to enhance the immunogenicity of the expressed fusion protein. Mice (BALB/c) vaccinated with DNA plasmid expressing the gp120R2 using codon-optimized Env sequences elicited high-titer anti-Env antibodies regardless of conjugation to C3d. In contrast, only mice vaccinated with DNA using wild-type gp120R2 sequences fused to mC3d3, had detectable anti- Env antibodies. Interestingly, mice vaccinated with DNA expressing gp120R2 from codon-optimized sequences elicited antibodies that neutralized both homologous and heterologous HIV-1 isolates. To determine if the unique sequence found in the crown of the V3 loop of the EnvR2 was responsible for the elicitation of the cross-clade neutralizing antibodies, the codons encoding for the Pro-Met (amino acids 313–314) were introduced into the sequences encoding the gp120ADA (R5) or gp12089.6 (R5X4). Mice vaccinated with gp120ADA–mC3d3–DNA with the Pro–Met mutation had antibodies that neutralized HIV-1 infection, but not the gp12089.6–mC3d3–DNA. Therefore, the use of the unique sequences in the EnvR2 introduced into an R5 tropic envelope, in conjunction with C3d fusion, was effective at broadening the number of viruses that could be neutralized. However, the introduction of this same sequence into an R5X4-tropic envelope was ineffective in eliciting improved cross-clade neutralizing antibodies. Originally published AIDS Research and Human Retroviruses, Vol. 20, No. 11, Nov 200

    Globetrotting strangles: the unbridled national and international transmission of Streptococcus equi between horses.

    Get PDF
    The equine disease strangles, which is characterized by the formation of abscesses in the lymph nodes of the head and neck, is one of the most frequently diagnosed infectious diseases of horses around the world. The causal agent, Streptococcus equi subspecies equi, establishes a persistent infection in approximately 10 % of animals that recover from the acute disease. Such 'carrier' animals appear healthy and are rarely identified during routine veterinary examinations pre-purchase or transit, but can transmit S. equi to naïve animals initiating new episodes of disease. Here, we report the analysis and visualization of phylogenomic and epidemiological data for 670 isolates of S. equi recovered from 19 different countries using a new core-genome multilocus sequence typing (cgMLST) web bioresource. Genetic relationships among all 670 S. equi isolates were determined at high resolution, revealing national and international transmission events that drive this endemic disease in horse populations throughout the world. Our data argue for the recognition of the international importance of strangles by the Office International des Épizooties to highlight the health, welfare and economic cost of this disease. The Pathogenwatch cgMLST web bioresource described herein is available for tailored genomic analysis of populations of S. equi and its close relative S. equi subspecies zooepidemicus that are recovered from horses and other animals, including humans, throughout the world. This article contains data hosted by Microreact

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The DNA sequence of the human X chromosome

    No full text
    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence
    corecore