291 research outputs found

    Mathematical description of stress-strain state of trunnion of ball mill taking into account temperature field

    Get PDF
    The article considers the trunnion of a ball mill in the framework of theory of elasticity, which is subjected to an uneven thermal impact due to the heating of the load. Equations describing the radial displacement of the point inside the trunnion of a ball mill are obtained. The equations describing the movement of trunnion points of the ball mill are derive

    Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing

    Get PDF
    The universally conserved eukaryotic initiation factor (eIF), eIF1A, plays multiple roles throughout initiation: it stimulates eIF2/GTP/Met-tRNAiMet attachment to 40S ribosomal subunits, scanning, start codon selection and subunit joining. Its bacterial ortholog IF1 consists of an oligonucleotide/oligosaccharide-binding (OB) domain, whereas eIF1A additionally contains a helical subdomain, N-terminal tail (NTT) and C-terminal tail (CTT). The NTT and CTT both enhance ribosomal recruitment of eIF2/GTP/Met-tRNAiMet, but have opposite effects on the stringency of start codon selection: the CTT increases, whereas the NTT decreases it. Here, we determined the position of eIF1A on the 40S subunit by directed hydroxyl radical cleavage. eIF1A's OB domain binds in the A site, similar to IF1, whereas the helical subdomain contacts the head, forming a bridge over the mRNA channel. The NTT and CTT both thread under Met-tRNAiMet reaching into the P-site. The NTT threads closer to the mRNA channel. In the proposed model, the NTT does not clash with either mRNA or Met-tRNAiMet, consistent with its suggested role in promoting the ‘closed’ conformation of ribosomal complexes upon start codon recognition. In contrast, eIF1A-CTT appears to interfere with the P-site tRNA-head interaction in the ‘closed’ complex and is likely ejected from the P-site upon start codon recognition

    Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing

    Get PDF
    The universally conserved eukaryotic initiation factor (eIF), eIF1A, plays multiple roles throughout initiation: it stimulates eIF2/GTP/Met-tRNAiMet attachment to 40S ribosomal subunits, scanning, start codon selection and subunit joining. Its bacterial ortholog IF1 consists of an oligonucleotide/oligosaccharide-binding (OB) domain, whereas eIF1A additionally contains a helical subdomain, N-terminal tail (NTT) and C-terminal tail (CTT). The NTT and CTT both enhance ribosomal recruitment of eIF2/GTP/Met-tRNAiMet, but have opposite effects on the stringency of start codon selection: the CTT increases, whereas the NTT decreases it. Here, we determined the position of eIF1A on the 40S subunit by directed hydroxyl radical cleavage. eIF1A's OB domain binds in the A site, similar to IF1, whereas the helical subdomain contacts the head, forming a bridge over the mRNA channel. The NTT and CTT both thread under Met-tRNAiMet reaching into the P-site. The NTT threads closer to the mRNA channel. In the proposed model, the NTT does not clash with either mRNA or Met-tRNAiMet, consistent with its suggested role in promoting the ‘closed’ conformation of ribosomal complexes upon start codon recognition. In contrast, eIF1A-CTT appears to interfere with the P-site tRNA-head interaction in the ‘closed’ complex and is likely ejected from the P-site upon start codon recognition

    HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.

    Get PDF
    The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders

    ИНДИВИДУАЛЬНЫЙ ПОДХОД К ПРИМЕНЕНИЮ АНТИТРОМБОЦИТАРНОЙ ТЕРАПИИ. НА ЧТО ОПЕРЕТЬСЯ В РЕШЕНИИ?

    Get PDF
    Use of antiplatelet therapy in the world indicates real difference in individual drug effect between patients, including the effect on prognosis. Problems of personification of individual approach, concerning antiplatelet therapy, are discussed.Опыт применения антиагрегантной терапии указывает на существенную разницу в реакции больных на антиагреганты, вызывающую различия в выраженности эффекта терапии по влиянию на исходы заболевания. Обсуждены проблемы индивидуального подхода в антиагрегантной терапии

    Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors

    Get PDF
    Type 2 internal ribosomal entry sites (IRESs) of encephalomyocarditis virus (EMCV), foot-and-mouth disease virus (FMDV) and other picornaviruses comprise five major domains H-L. Initiation of translation on these IRESs begins with specific binding of the central domain of initiation factor, eIF4G to the J-K domains, which is stimulated by eIF4A. eIF4G/eIF4A then restructure the region of ribosomal attachment on the IRES and promote recruitment of ribosomal 43S pre-initiation complexes. In addition to canonical translation factors, type 2 IRESs also require IRES trans-acting factors (ITAFs) that are hypothesized to stabilize the optimal IRES conformation that supports efficient ribosomal recruitment: the EMCV IRES is stimulated by pyrimidine tract binding protein (PTB), whereas the FMDV IRES requires PTB and ITAF45. To test this hypothesis, we assessed the effect of ITAFs on the conformations of EMCV and FMDV IRESs by comparing their influence on hydroxyl radical cleavage of these IRESs from the central domain of eIF4G. The observed changes in cleavage patterns suggest that cognate ITAFs promote similar conformational changes that are consistent with adoption by the IRESs of comparable, more compact structures, in which domain J undergoes local conformational changes and is brought into closer proximity to the base of domain I

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    Levilimab clinical efficacy for interleukin-6 receptor inhibition in COVID-19 and its potential for treating cytokine release syndrome of other aetiologies

    Get PDF
    The COVID-19 mortality is associated with an increase in interleukin-6 (IL-6) levels. Levilimab is an anti–IL-6 receptor antibody with proven clinical efficacy in patients with severe COVID-19.The aim of the study was to assess the association of COVID-19 severity and levilimab effectiveness with IL-6 levels and to explore the potential for using levilimab in other conditions accompanied by cytokine release syndrome.Materials and methods: the subgroup analysis was based on the data of COVID patients with known baseline IL-6 levels from the CORONA clinical study. Subgroups were formed according to baseline IL-6 levels: ≤5 pg/mL (normal) and >5 pg/mL (elevated). The subgroup analysis included descriptive statistics of the patients and time courses of their clinical and laboratory findings (at screening, on the day of investigational product administration, and further until day 14). In order to compare the percentages of patients who had required rescue therapy, the authors used Fisher's exact test.Results: the subgroup analysis included 91 patients (47 from the levilimab group and 44 from the placebo group). At baseline, the authors observed elevated levels of IL-6 in 31/47 (66%) subjects in the levilimab group and 29/44 (48.4%) subjects in the placebo group. The subjects with elevated IL-6 demonstrated more pronounced clinical signs of pneumonia and abnormalities in inflammatory markers. Elevated baseline IL-6 levels were associated with the need for rescue therapy (OR=3.714; 95% CI: 1.317–9.747; p=0.0183); this association was stronger in the placebo group (OR=8.889; 95% CI: 2.098–33.31; p=0.0036). Also, the placebo group showed long-term abnormalities in the clinical and laboratory findings.Conclusions: IL-6 is one of the key elements in the pathogenesis of cytokine release syndrome related to COVID-19 and other conditions. Elevated IL-6 levels are associated with the severity of COVID-19. Inhibition of IL-6 receptors by levilimab leads to clinical improvement in patients with severe COVID-19, suggesting the effectiveness of levilimab in pathogenesis-oriented therapy for cytokine release syndrome of other aetiologies

    The ART-XC telescope on board the SRG observatory

    Full text link
    ART-XC (Astronomical Roentgen Telescope - X-ray Concentrator) is the hard X-ray instrument with grazing incidence imaging optics on board the Spektr-Roentgen-Gamma (SRG) observatory. The SRG observatory is the flagship astrophysical mission of the Russian Federal Space Program, which was successively launched into orbit around the second Lagrangian point (L2) of the Earth-Sun system with a Proton rocket from the Baikonur cosmodrome on 13 July 2019. The ART-XC telescope will provide the first ever true imaging all-sky survey performed with grazing incidence optics in the 4-30 keV energy band and will obtain the deepest and sharpest map of the sky in the energy range of 4-12 keV. Observations performed during the early calibration and performance verification phase as well as during the on-going all-sky survey that started on 12 Dec. 2019 have demonstrated that the in-flight characteristics of the ART-XC telescope are very close to expectations based on the results of ground calibrations. Upon completion of its 4-year all-sky survey, ART-XC is expected to detect ~5000 sources (~3000 active galactic nuclei, including heavily obscured ones, several hundred clusters of galaxies, ~1000 cataclysmic variables and other Galactic sources), and to provide a high-quality map of the Galactic background emission in the 4-12 keV energy band. ART-XC is also well suited for discovering transient X-ray sources. In this paper, we describe the telescope, results of its ground calibrations, major aspects of the mission, the in-flight performance of ART-XC and first scientific results.Comment: 19 pages, 30 figures, accepted for publication in Astronomy and Astrophysic
    corecore