
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Mathematical description of stress-strain state of trunnion of ball mill
taking into account temperature field
To cite this article: Ju A Bondarenko et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 560 012009

 

View the article online for updates and enhancements.

This content was downloaded from IP address 93.157.144.41 on 22/06/2020 at 18:38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Belgorod State University

https://core.ac.uk/display/333601537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1757-899X/560/1/012009


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

MEACS2018

IOP Conf. Series: Materials Science and Engineering 560 (2019) 012009

IOP Publishing

doi:10.1088/1757-899X/560/1/012009

1

 

 

 

 

 

 

Mathematical description of stress-strain state of trunnion of 

ball mill taking into account temperature field 

Ju A Bondarenko1, V V Lomakin2 and O V Bestuzheva2 

1BSTU named after V.G. Shukhov, 46, Kostyukova Street, Belgorod, 308012, Russia  
2Belgorod National Research University, 85, Pobedy Street, Belgorod, 308015, Russia 

E-mail: kdsm2002@mail.ru  

Abstract. The article considers the trunnion of a ball mill in the framework of theory of 

elasticity, which is subjected to an uneven thermal impact due to the heating of the load. 

Equations describing the radial displacement of the point inside the trunnion of a ball mill are 

obtained. The equations describing the movement of trunnion points of the ball mill are derived. 

The stress-strain state of the trunnion of a ball mill has been determined depending on the 

temperature of inner and outer surfaces of the trunnion. The deformations and stresses arising on 

the surface of the trunnion are investigated by numerical methods.  

1.  Introduction 

In the framework of theory of elasticity trunnion of a ball mill is considered, which due to heating of 

load is subjected to an uneven thermal effect on the volume. As a result, a temperature field arises, which 

in turn will entail occurrence of thermal deformations and stresses. 

The main cause of the stress-strain state of the trunnion of a ball mill is a temperature field, which is 

uniform along the axis of a ball mill, but changes in the radial direction. As a result  we  assume that the 

changes in temperature T in the trunnion of a ball mill take place only in the radial direction [1]:  

𝑇 = 𝑇(𝑟),      (1) 

where r varies in the following limits: 𝑅1 ≤  𝑟 ≤ 𝑅2 (𝑅1 is the inner radius of the trunnion of a ball mill, 

and 𝑅2 is the outer radius of the trunnion of a ball mill). 

In case of an axial symmetry a cylindrical coordinate system (r, φ, z) is introduced according to the 

design scheme presented in Figure 1. The trunnion of a ball mill will be considered as a thick-walled 

cylindrical tube with a radial temperature change (1). 

Neglecting the influence of ends, it can be assumed that the cross-sections that are perpendicular to 

the OZ axis are in equal conditions and flat. 
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Figure 1. The calculation scheme for choosing a coordinate system. 

Based on the assumptions made, it can be concluded that the radial movements of point U in the 

trunnion of a ball mill depend only on one coordinate r, the movement in the azimuth direction is absent, 

and the relative elongation in the direction of the axis OZ is constant: 

εz = 𝑐𝑜𝑛𝑠𝑡.     (2) 

In turn, the relative elongations in radial direction: 

𝜀𝑟 =
𝑑𝑈

𝑑𝑟
,     (3) 

in azimuthal direction: 

εφ =
U

r
.     (4) 

The physical equations describing the stress field in cylindrical coordinates will have the following 

form [2]: 

𝜎𝑧 = 2𝐺𝜀𝑧 + 𝜆𝜑0 − 𝜂𝑇(𝑟),    (5) 

𝜎𝑟 = 2𝐺𝜀𝑟 + 𝜆𝜑0 − 𝜂𝑇(𝑟),    (6) 

𝜎𝜑 = 2𝐺𝜀𝜑 + 𝜆𝜑0 − 𝜂𝑇(𝑟),    (7) 

where σz, σr, σφ – respectively, the diagonal components of the stress tender.  For brevity, the following 

notation is entered: 

𝜑0 = 𝜀𝑧 + 𝜀𝑟 + 𝜀𝜑,    (8) 

𝜂 = 2𝐺𝛼
1+𝜈

1−2𝜈
,     (9) 

  𝜆 =
2𝜈𝐺

1−2𝜈
,     (10) 

  𝐺 =
𝐸

2(1+𝜈)
.     (11) 

where E – elastic modulus; ν – Poisson's ratio; α – the linear thermal expansion coefficient. 

Substituting (3), (4) into (6) and (7) allows us to obtain the following relations: elasticity modulus;  

𝜎𝑟 = 2𝐺
𝑑𝑈

𝑑𝑟
+ 𝜆𝜑0 − 𝜂𝑇(𝑟),    (12) 

𝜎𝜑 = 2𝐺
𝑈

𝑟
+ 𝜆𝜑0 − 𝜂𝑇(𝑟).    (13) 

Let us suppose that, as in the case of solving the problem of a thick-walled ring [1], the following 
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equilibrium condition must be satisfied: 

𝜎𝑟 − 𝜎𝜑 + 𝑟
𝑑𝜎𝑟

𝑑𝑟
= 0.    (14) 

Thus, the expressions (12)-(14) are the initial ones for obtaining an equation describing the radial 

displacement of a point inside the trunnion of a ball mill. 

2.  Derivation of an equation describing the movement of the trunnion points of a ball mill  

To obtain the equation describing the displacement of the point U inside the trunnion of a ball mill under 

the action of the stress field (5), (12) and (13), let us find the derivative of (12) along the coordinate r 

[3]: 
𝑑𝜎𝑟

𝑑𝑟
= 2𝐺

𝑑2𝑈

𝑑𝑟2 + 𝜆
𝑑𝜑0

𝑑𝑟
− 𝜂

𝑑𝑇

𝑑𝑟
.    (15) 

According to (8), taking into account (2), let us calculate: 
𝑑𝜑0

𝑑𝑟
=

𝑑𝜀𝑟

𝑑𝑟
+

𝑑𝜀𝜑

𝑑𝑟
.     (16) 

Substituting (3) and (4) in (16) gives: 
𝑑𝑈

𝑑𝑟
=

𝑑2𝑈

𝑑𝑟2 +
1

𝑟

𝑑𝑈

𝑑𝑟
−

𝑈

𝑟2.    (17) 

Based on (12) and (13), we can find: 

𝜎𝑟 − 𝜎𝜑 = 2𝐺 (
𝑑𝑈

𝑑𝑟
−

𝑈

𝑟
).     (18) 

Substitution (15), (17) and (18) in equilibrium conditions (14) leads to the following result: 

2𝐺 (
𝑑𝑈

𝑑𝑟
−

𝑈

𝑟
) + 2𝐺𝑟

𝑑2𝑈

𝑑𝑟2 +  𝜆 (
𝑑2𝑈

𝑑𝑟2 +
1

𝑟

𝑑𝑈

𝑑𝑟
−

𝑈

𝑟2) − 𝜂
𝑑𝑇

𝑑𝑟
𝑟.   (19) 

In view of (9) and (10), equation (19) takes the form: 
𝑑2𝑈

𝑑𝑟2 +
1

𝑟

𝑑𝑈

𝑑𝑟
−

𝑈

𝑟2 +
𝜈

1−2𝜈
(

𝑑2𝑈

𝑑𝑟2 +
1

𝑟

𝑑𝑈

𝑑𝑟
−

𝑈

𝑟2) = 𝛼
1+𝜈

1−𝜈

𝑑𝑇

𝑑𝑟
.  20) 

Equation (20) finally can be rewritten in the following form: 
𝑑2𝑈

𝑑𝑟2 +
1

𝑟

𝑑𝑈

𝑑𝑟
−

𝑈

𝑟2 = 𝛼
1+𝜈

1−𝜈

𝑑𝑇

𝑑𝑟
.     (21) 

From a mathematical point of view, relation (21) is the inhomogeneous Euler differential equation.  

To find the solution (21), we use the variation method of arbitrary constants.  For this, according to the 

method chosen, it is first necessary to find a solution to the homogeneous equation 𝑈0(𝑟): 
𝑑2𝑈0

𝑑𝑟2 +
1

𝑟

𝑑𝑈0

𝑑𝑟
−

𝑈0

𝑟2 = 0.    (22) 

Equation (22) can be reduced to a homogeneous differential equation of the second order with 

constant coefficients using the following replacement: 

𝜌 = ln 𝑟.     (23) 

Let us calculate: 
𝑑𝑈0

𝑑𝑟
=

𝑑𝑈

𝑑𝜌
∙

𝑑𝜌

𝑑𝑟
=

𝑑𝑈0

𝑑𝜌
∙

1

𝑟
= 𝑒−𝜌 ∙

𝑑𝑈0

𝑑𝜌
.    (24) 

𝑑2𝑈0

𝑑𝑟2 =
𝑑

𝑑𝜌
(𝑒−𝜌 ∙

𝑑𝑈0

𝑑𝜌
) ∙ 𝑒−𝜌 = 𝑒−2𝜌 𝑑2𝑈0

𝑑𝜌2 − 𝑒−2𝜌 𝑑𝑈0

𝑑𝜌
.   (25) 

Substituting (24) and (25) into (22) allows us obtaining the following equations [4]: 

 
𝑑2𝑈0

𝑑𝜌2 − 𝑈0 = 0.     (26) 

The solution of the differential equation (26) is: 

𝑈0 = 𝐶1𝑒−𝜌 + 𝐶2𝑒−𝜌,     (27) 

or taking into account (23) the formula (27) is transformed: 

𝑈0 =
𝐶1

𝑟
+ 𝐶2𝑟.     (28) 

According to the method of variation of arbitrary constants, the desired solution of the 

inhomogeneous differential equation (21) has the form: 

𝑈(𝑟) =
𝐶1(𝑟)

𝑟
+ 𝐶2(𝑟) ∙ 𝑟.    (29) 

Differentiation (29) for r allows obtaining the relation: 
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𝑑𝑈

𝑑𝑟
= −

𝐶1(𝑟)

𝑟2 + 𝐶2(𝑟) +
𝑑𝐶1(𝑟)

𝑑𝑟
∙

1

𝑟
+ 𝑟 ∙

𝑑𝐶2(𝑟)

𝑑𝑟
.   (30) 

According to the method of variation of arbitrary constants, the last two terms in (30) should be 

equated to zero: 
𝑑𝐶1(𝑟)

𝑑𝑟
∙

1

𝑟
+ 𝑟 ∙

𝑑𝐶2(𝑟)

𝑑𝑟
= 0.     (31) 

In view of (31), find the derivative of (30): 
𝑑2𝑈

𝑑𝑟2 = −
1

𝑟2 ∙
𝑑𝐶1(𝑟)

𝑑𝑟
+

2𝐶1(𝑟)

𝑟3 +
𝑑𝐶2(𝑟)

𝑑𝑟
.   (32) 

Substituting (30), (31) and (32) into the original equation (21) leads to the following result: 

−
1

𝑟2 ∙
𝑑𝐶1(𝑟)

𝑑𝑟
+

𝑑𝐶2(𝑟)

𝑑𝑟
= 0.     (33) 

Based on relations (31) and (33), we find: 
𝑑𝐶1(𝑟)

𝑑𝑟
= −

𝛼

2
∙

1+𝜈

1−𝜈
∙ 𝑟2 𝑑𝑇(𝑟)

𝑑𝑟
,    (34) 

2 ∙
𝑑𝐶2(𝑟)

𝑑𝑟
= 𝛼

1+𝜈

1−𝜈
∙

𝑑𝑇(𝑟)

𝑑𝑟
,     (35) 

The integration of differential relations (34) and (35) leads to the following relations: 

𝐶1(𝑟) = −
𝛼

2
∙

1+𝜈

1−𝜈
∙ ∫ 𝑟2 𝑑𝑇

𝑑𝑟
𝑑𝑟+𝐶10,    (36) 

𝐶2(𝑟) =
1

2
𝛼 ∙

1+𝜈

1−𝜈
𝑇(𝑟) + 𝐶20,    (37) 

here 𝐶10 and 𝐶20 – the arbitrary constants that can be determined using the initial conditions. 

We transform the formula (36) by completing the integration in parts: 

𝐶1(𝑟) = −
𝛼

2
∙

1+𝜈

1−𝜈
∙ 𝑟2𝑇(𝑟) +

𝛼

2
∙ 2 ∙

1+𝜈

1−𝜈
∫ 𝑟𝑇(𝑟)𝑑𝑟 + 𝐶10.  (38) 

Substituting (37) and (38) into (29) allows us obtaining the following expression, which determines 

the solution of the equation (21): 

𝑈(𝑟) =
𝐶10

𝑟
+ 𝐶20 ∙ 𝑟 +

𝛼

𝑟
∙

1+𝜈

1−𝜈
∫ 𝑟𝑇(𝑟)𝑑𝑟.   (39) 

According to the result of [1], if the constant temperatures 𝑇𝑅1
 and 𝑇𝑅2

 are maintained on the inner 

and outer surfaces of the thick-walled pipe, then for such steady flow temperature distribution over the 

wall thickness the following formula takes place: 

𝑇(𝑟) =
𝑇𝑅1

ln
𝑅2
𝑟

+𝑇𝑅2
ln

𝑟

𝑅1

ln
𝑅2
𝑅1

.    (40) 

Based on (40), the solution of the equation (21), (39) can be conveniently represented as an integral 

with a variable upper limit [5]: 

𝑈(𝑟) =
𝐶10

𝑟
+ 𝐶20 ∙ 𝑟 +

𝛼

𝑟
∙

1+𝜈

1−𝜈
∫ 𝑥𝑇(𝛼)𝑑𝑥

𝑟

𝑅1
.   (41) 

To determine the arbitrary constants 𝐶10 and 𝐶20, it is necessary to use the boundary conditions that 

are superimposed on the stress values acting on the internal 𝑅1 and external 𝑅2 radii of the mill trunnion: 

𝜎𝑟(𝑟 = 𝑅1) = 𝜎0,    (42) 

𝜎𝑟(𝑟 = 𝑅2) = 0,    (43) 

where 𝜎0 – the stress value experienced by the internal radius of the mill pin under the load. 

The efforts exerted by the faraway loading F in a pipe ball mill 1 cm long, which were defined in [6] 

by the graphic-analytical method, are presented in figure 2. 
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Figure 2. The calculation scheme for estimating the load force exerted on the inner surface of the 

radius 𝑅1 of the trunnion of a ball mill during cascade operation. 

According to the design scheme presented in Figure 2, the volume of the ball-bearing load affects 

the inner surface of the trunnion of a ball mill when turning through the angle γ, the value of which with 

the load factor, according to the reference data [6], is related by: 

𝜓 =
𝛾

206°
− 0.374,    (44) 

here the angle γ is given in degrees. 

In the transition to a radial measure, the relation (44) can be brought to the form: 

𝜓 = 0.278𝛾 − 0.374.     (45) 

Based on (45), we find the change in the angular size of the ball-bearing load of the trunnion of a 

ball mill from the load factor: 

𝛾 = 3.594𝜓 + 1.344.    (46) 

The obtained expressions (45) and (46) are valid within1.74 < 𝛾 < 4.54. 

According to (46), the time ∆𝑡, during which the inner surface of the trunnion of the ball mill is 

subjected to a load, is: 

∆𝑡 =
𝛾

𝜔
,      (47) 

where 𝜔 – spindle speed. 

Taking into account (46), the formula (47) takes the form: 

∆𝑡 =
3.594𝜓+1.344

𝜔
.    (48) 

The time of one complete trunnion of a ball mill is equal to: 

𝑇 =
2𝜋

𝜔
.      (49) 

Based on (48) and (49) find: 
∆𝑡

𝑇
=

3.594𝜓+1.344

2𝜋
.    (50) 

When substituting into (50) the working value of the load factor 𝜓 = 0.4, we find: 

∆𝑡 = 0.44𝑇.     (51) 

Thus, according to (51), the residence time of the material in the inner part of the ball mill trunnion 

with the transverse angular size γ under the action of the force of the ball charge is 0.44 from the time 

of the complete rotation. 

The potential energy of deformation of the inner part of the trunnion of a ball mill under the influence 

of ball-bearing loads accumulates over time ∆𝑡/2 (an increasing part of the graph in Fig. 2). And over 

time ∆𝑡/2 in the process of unloading, the forces in a reversible form are released, turning into the 

thermal energy. Therefore, most of the time at 0.56T, the inner part of the trunnion of a ball mill remains 

unloaded. 

On the basis of what was said in the relation (42), the value of 𝜎0 can be taken equal to zero and 

therefore: 

𝜎𝑟(𝑟 = 𝑅1) = 0.     (52) 
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3.  Determination of the stress-strain state of the trunnion of a ball mill  

To determine the constant values 𝜀𝑧, 𝐶10 and 𝐶20, we must perform the following operations: 

 substitute (40) into (41); 

 use boundary conditions (43) and (52); 

 use the condition of the absence of axial load of a ball mill, which can be written in the following 

form [7]: 

2𝜋 ∫ 𝜎𝑧𝑟𝑑𝑟
𝑅2

𝑅1
= 0.    (53) 

Substituting (40) into (41) gives the following result: 

𝑈 =
𝐶10

𝑟
+ 𝐶20 ∙ 𝑟 −

1

4𝑟(1−𝜈) ln(
𝑅2

𝑅1
⁄ )

∙ 𝛼(1 + 𝜈)(2𝑅1
2𝑇𝑅1

ln (
𝑅2

𝑅1
⁄ ) +  

+𝑅1
2(𝑇𝑅1

− 𝑇𝑅2
) − 2𝑇𝑅1

𝑟2 ln (
𝑅2

𝑟⁄ ) − 𝑟2(𝑇𝑅1
− 𝑇𝑅2

) − 2𝑇𝑅2
𝑟2 ln (𝑟

𝑅1
⁄ ).     54) 

Substituting the resulting equations into (5), (12), (13), taking into account (8) - (10), allows us 

obtaining a system of two equations for unknown quantities 𝐶10 and 𝐶20. The solution of this system is: 

𝐶10 =
𝛼𝑅1

2(1+𝜈)

4(1−𝜈)
[

2(𝑅1
2𝑇𝑅1−𝑅2

2𝑇𝑅2)

𝑅2
2−𝑅1

2 −
𝑇𝑅2−𝑇𝑅1

ln(
𝑅2

𝑅1
⁄ )

],   (55) 

𝐶20 =
𝛼

2
∙

(1−3𝜈)

(1−𝜈)
[

𝑅2
2𝑇𝑅2−𝑅1

2𝑇𝑅1

𝑅2
2−𝑅1

2 −
𝑇𝑅1−𝑇𝑅2

2ln(
𝑅2

𝑅1
⁄ )

].   (56) 

From here, the following relationships are obtained: 

𝜎𝑟 =
𝛼𝐸

2(1−𝜈)
∙ [

𝑟2(𝑅2
2𝑇𝑅2−𝑅1

2𝑇𝑅1)+𝑅1
2𝑅2

2(𝑇𝑅1−𝑇𝑅2)

𝑟2(𝑅2
2−𝑅1

2)
−

𝑇𝑅1 ln(
𝑅2

𝑟⁄ )+𝑇𝑅2 ln(𝑟
𝑅1

⁄ )

ln(
𝑅2

𝑅1
⁄ )

],      (57) 

𝜎𝜑 = −
𝛼𝐸

(1 − 𝜈)(𝑅2
2 − 𝑅1

2) ln (
𝑅2

𝑅1
⁄ )

∙ {[
𝑅1

2𝑅2
2

𝑟2 (𝑇𝑅1
− 𝑇𝑅2

) + 𝑅1
2 𝑇𝑅1

−𝑅2
2𝑇𝑅2

] ln (
𝑅2

𝑅1
⁄ )

+ (𝑅2
2−𝑅1

2) (𝑇𝑅2
ln (𝑟

𝑅1
⁄ ) + 𝑇𝑅1

ln (
𝑅2

𝑟⁄ )) + 

+𝑇𝑅2
− 𝑇𝑅1

},     (58) 

𝜀𝑟 =
𝛼

2(1−𝜈)
[

(1−3𝜈)(𝑅2
2𝑇𝑅2−𝑅1

2𝑇𝑅1)

𝑅2
2−𝑅1

2 +
2𝜈(𝑇𝑅2−𝑇𝑅1)+(1+𝜈)(𝑇𝑅1 ln(

𝑅2
𝑟⁄ )+𝑇𝑅2 ln(𝑟

𝑅1
⁄ ))

ln(
𝑅2

𝑅1
⁄ )

+
(1+𝜈)𝑅1

2𝑅2
2(𝑇𝑅1−𝑇𝑅2)

𝑟2(𝑅2
2−𝑅1

2)
], (59) 

𝜀𝜑 =
𝛼

2(1−𝜈)
[

(1−3𝜈)(𝑅2
2𝑇𝑅2−𝑅1

2𝑇𝑅1)

𝑅2
2−𝑅1

2 −
(1−𝜈)(𝑇𝑅2−𝑇𝑅1)−(1+𝜈)(𝑇𝑅1 ln(

𝑅2
𝑟⁄ )+𝑇𝑅2 ln(𝑟

𝑅1
⁄ ))

ln(
𝑅2

𝑅1
⁄ )

−
(1+𝜈)𝑅1

2𝑅2
2(𝑇𝑅1−𝑇𝑅2)

𝑟2(𝑅2
2−𝑅1

2)
]. (60) 

𝜀𝑧 =
𝛼[(𝑇𝑅2−𝑇𝑅1)(𝑅2

2−𝑅1
2)+2(𝑅1

2𝑇𝑅1−𝑅2
2𝑇𝑅2) ln(

𝑅2
𝑅1

⁄ )]

2(𝑅2
2−𝑅1

2) ln(
𝑅2

𝑅1
⁄ )

.   (61) 

The relations obtained determine the change in the stress-strain state of the pin of a ball mill as the 

function of temperature and the change in the radial distance from the axis of symmetry of the pin of the 

mill. 

To find the deformation of the internal surface of the trunnion of the ball mill, we substitute 𝑟 = 𝑅1: 

𝜀𝑟(𝑟 = 𝑅1) =
𝛼

1−𝜈
[

𝑇𝑅1(𝑅2
2−𝑅1

2)+𝜈𝑇𝑅1(𝑅2
2+𝑅1

2)−2𝜈𝑇𝑅2
𝑅2

2

𝑅2
2−𝑅1

2 +
𝜈(𝑇𝑅2

−𝑇𝑅1)

ln(
𝑅2

𝑅1
⁄ )

],   (62) 

𝜀𝜑(𝑟 = 𝑅1) =
𝛼

2(1−𝜈)
[

(1−3𝜈)(𝑅2
2𝑇𝑅2−𝑅1

2𝑇𝑅1)+(1+𝜈)𝑇𝑅1(𝑅2
2−𝑅1

2)

𝑅2
2−𝑅1

2 −
(1−𝜈)(𝑇𝑅2−𝑇𝑅1)

ln(
𝑅2

𝑅1
⁄ )

].   (63) 

To find the deformations on the outer side of the trunnion of the ball mill in the formula, we must 

put 𝑟 = 𝑅2: 

𝜀𝜑(𝑟 = 𝑅2) =
𝛼

2(1−𝜈)
[

(1−3𝜈)(𝑅2
2𝑇𝑅2−𝑅1

2𝑇𝑅1)−(1+𝜈)(𝑅1
2(𝑇𝑅1−𝑇𝑅2)+𝑇𝑅2(𝑅2

2−𝑅1
2))

𝑅2
2−𝑅1

2 − 
(1−𝜈)(𝑇𝑅2

−𝑇𝑅1)

ln(
𝑅2

𝑅1
⁄ )

. (64) 

Let us find the values of the stresses on the inner surface of the trunnion of the ball mill. To perform this 

operation, we set 𝑟 = 𝑅1: 
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𝜎𝑧(𝑟 = 𝑅1) = 𝜎𝜑(𝑟 = 𝑅1) =
𝛼𝐸(𝑇𝑅2

−𝑇𝑅1)

1−𝜈
[

𝑅2
2

𝑅2
2−𝑅1

2 −
1

2 ln(
𝑅2

𝑅1
⁄ )

].  (65) 

When substituting 𝑟 = 𝑅2, we obtain stress values for the outer surface of the trunnion of the ball 

mill: 

𝜎𝑧(𝑟 = 𝑅2) = 𝜎𝜑(𝑟 = 𝑅1) =
𝛼𝐸(𝑇𝑅2−𝑇𝑅1)

1−𝜈
[

𝑅1
2

𝑅2
2−𝑅1

2 −
1

2 ln(
𝑅2

𝑅1
⁄ )

].  (66) 

Thus, the obtained expressions (62) – (67) determine the values of the stress-strain state of the inner 

and outer surfaces of the trunnion, depending on the temperature inside and outside the trunnion of a 

ball mill. 

4.  The study of the deformation and strain of the trunnion of a ball mill by numerical methods 

The study of the character of the behavior of strains and stresses on the basis of (62)–(66) with a change 

in the temperature parameters of a pin is carried out by numerical methods. To conduct the research 

using numerical methods, it is necessary to set the initial numerical values of the constants and the sizes 

of the worn pin. 

 The Poisson's ratio, the modulus of elasticity and the linear thermal expansion coefficient have the 

following values for the pin material - Steel 40: 

 = 0.25, Е = 200 000 MPa, α = 12.4 grad.−1  
Let us consider a mill 3,2х15 m with the following axle dimensions in meters: 

𝑅1 = 0.575; 𝑅2 = 0.7. 
As part of the math package Maple, equations (2.79)-(2.86) are solved by the varying parameters 

within: 
𝑇𝑅1

= 20 … 120℃, 𝑇𝑅2
= 5 … 30℃. 

The results of the numerical solution of the equations (62)–(66) are presented in the form of graphs 

in figure 3-5. 

The change in the deformation of the inner surface of the trunnion (r = R1) in the azimuthal and radial 

directions with changing temperatures of the outer and inner surface is shown in Figure 3. The analysis 

of these dependences shows that the graphs are monotonically increasing in nature with the changing 

temperatures: an increase in the temperature of the inner and outer temperature leads to the increase in 

the deformation of the inner surface of the trunnion in two directions. 

Figure 4 shows the change in the deformation of the outer surface of the axle (r = R2) in the azimuthal 

and radial directions when the temperatures of the outer and inner surface change. The graphs are linear. 

As the temperature of the inner surface of the pin increases, the deformation of the outer surface in the 

azimuthal and radial directions decreases, and as the temperature of the outer surface increases, it 

increases as well. 
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a)      b) 

Figure 3. The change in the deformation of the inner surface of the trunnion with changes in the 

temperatures of the outer and inner surface: a) in the azimuthal direction, b) in the radial direction

 
(а)      (b) 

Figure 4. The change in the deformation of the outer surface of the trunnion with changes in the 

temperatures of the outer and inner surface: (a) in the azimuthal direction, (b) in the radial direction. 

The graphs of the stress variation of the inner and outer surface of the trunnion are shown in figure 5. 

Negative values on the graph of the stress variation of the inner surface of the trunnion (Figure 5a) 

indicate the actual direction of the stresses on the surface back to be accepted. This means that increasing 

the temperature of the inner surface of the trunnion affects the outer surface of the trunnion. 

Analysis of the dependence of the stress on the outer surface on the change in temperature of the 

outer and inner surface shows that as the temperature inside the spigot increases, the stresses on the 

outer surface increase. In this case, the stresses on the external surface are inversely related to the 

ambient temperature: as the temperature increases, the stress values decrease slightly. 

 



MEACS2018

IOP Conf. Series: Materials Science and Engineering 560 (2019) 012009

IOP Publishing

doi:10.1088/1757-899X/560/1/012009

9

 

 

 

 

 

 

 
(а)     (b) 

Figure 5. The change in the tension of the pin surface with changes in temperature: (a) the inner 

surface, (b) the outer surface. 

5.  Conclusions 

The trunnion of a ball mill in the framework of the theory of elasticity was considered, which is subjected 

to an uneven thermal impact due to the heating of the load. The equations describing the radial 

displacement of a point inside the trunnion of a ball mill were obtained. The equations describing the 

movement of the trunnion points of the ball mill were derived. The stress-strain state of the trunnion of 

a ball mill was determined depending on the temperature of the inner and outer surfaces of the trunnion.  

The deformations and stresses arising on the surface of trunnion were investigated by numerical 

methods.  
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