30 research outputs found

    Gastrointestinal bleeding in a newborn infant with congenital factor X deficiency and COVID-19—A common clinical feature between a rare disorder and a new, common infection

    Get PDF
    Dear Editors, Congenital factor X (FX) deficiency is an extremely rare, bleeding disorder with an estimated incidence of one per 1 million. Patients with severe FX deficiency (FX:C < 1%) demonstrate a wide spectrum of serious clinical presentations, including hemarthrosis, hematoma, gastrointestinal (GI) bleeding, intracranial hemorrhage (ICH), and umbilical cord bleeding.1 In fact, severe FX deficiency, with a high rate of life‐threatening bleeding, is the second‐most severe, rare coagulation factor deficiency (RCFD) after FXIII deficiency.1, 2 Although homozygotes are at risk of severe bleeding, heterozygotes usually are asymptomatic, but postsurgical bleeding or bleeding after childbirth may occur.1, 2 Other risk factors can increase the risk of bleeding in FX deficiency, and coronavirus disease 2019 (COVID‐19), a new medical challenge, could affect the patient's bleeding or thrombotic tendency.3 COVID‐19, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) presents an enormous challenge for everyone, especially for those with underlying risk factors such as cardiovascular disease, diabetes, obesity, and renal failure. Age and male sex are other risk factors.4 Limited data are available regarding the effect of COVID‐19 on patients with congenital bleeding disorders (CBDs), particularly RCFDs.5 It has been shown that hypercoagulability‐related adverse consequences are less common among patients with CBDs, at least in those with moderate‐to‐severe deficiency, but further studies, including our ongoing work on a large number of patients, are required.5 Although there are several reports of newborns among infected pregnant mothers, this is the first report of such a case in an RCFD. This case report may help medical professionals to better manage similar cases. A 19‐year‐old pregnant woman was infected with SARS‐CoV‐2 early in the 9th month of pregnancy. Reverse transcriptase‐polymerase chain reaction (RT‐PCR) confirmed the infection. The patient had been in close contact with family members with confirmed COVID‐19. The patient had cough and fever. Due to the mild presentation, she was given Azithromycin and advised to isolate herself at home. The symptoms resolved within 14 days. At end of her 9th month, three days prior to the planned cesarean section, she was rechecked for SARS‐CoV‐2 infection; her RT‐PCR was negative. She successfully underwent cesarean section without complications and delivered a healthy full‐term baby. Therefore, mother and newborn discharged the following morning. In the evening, the baby experienced bloody vomiting and was hospitalized for further assessment, which showed GI bleeding. At admission, laboratory tests showed a positive C‐reactive protein (CRP) (qualitative), a low hemoglobin level, and prolonged prothrombin time (PT), and activated partial thromboplastin time (APTT) (Table 1). He was hospitalized in the neonate intensive care unit (NICU) for 10 days. Due to the risk of SARS‐CoV‐2 infection, on the third day after admission he was tested by RT‐PCR, which was positive. The neonate received 30 mL frozen plasma (FFP) six times over 10 days, which resolved the GI bleeding. Tranexamic acid (TXA) was administered at a dose of 10 mg/kg every 8 hours. Due to lack of COVID‐19 symptoms, he did not receive any special treatment for the disorder. After 10‐day hospitalization in the NICU, the neonate was sent to an isolation room for 5 days, during which his condition stabilized, after which he was discharged in stable condition. He has had no complications during the past two months after discharge. Since the child's father and two other first‐degree family members have severe FX deficiency, and the parents of the baby are closely related, the mother and the baby were checked for FX deficiency. Routine coagulation tests, and FX:C assay performed by STA Compact automatic coagulometer (Stago, Paris, France), revealed a severe deficiency in the baby, and a mild deficiency, compatible with heterozygote FX deficiency, in the mother (Table 1). Table 1. Laboratory characteristics of mother and baby with factor X deficiency and COVID‐19 Test Proband (2nd day after birth) Proband (7th day after birth) Proband (2 months after hospital discharge) Mother (about 3 1/2 months after SARS‐CoV‐2 infection) WBC × 109/L 14.2 (8‐24)b 9.43 (5‐21) 10.79 (6‐18) 8.7 (3.6‐10.6) RBC × 109/L 2.5 (4.36‐5.96) 2.78 (4.2‐5.8) 3.50 (3.4‐5) 4.41 (3.8‐5.2) Hb (g/dL) 8.2 (16.4‐20.8) 9.2 (15.2‐20.4) 10.2 (10.6‐16.4) 13.6 (12‐15) HCT (%) 24.6 (48‐68) 27 (50‐64) 29.2 (32‐50) 41.4 (35‐49) Lymphocyte × 109/L 6.4 (1.3‐11) 4.3 (1.2‐11.3) 8.21 (2.5‐13) 2.22 (1‐3.2) Neutrophil × 109/L 4.9 (2.6‐17) 2.9 (1.5‐12.6) 1.85 (1.2‐8.1) 5.75 (1.7‐7.5) Platelet × 109/L 370 (150‐450) 331 (150‐450) 334 (150‐450) 276 (150‐450) PT (sec) >60 (PTC: 12.6) 90 (PTC: 12.6) >60 (PTC: 10) 13 (PTC: 10) APTT (sec) >120 (APTTC: 31) 100 (APTTC: 30) >120 (APTTC: 32) 37 (APTTC: 32) CRP (Quantitative) Trace Negative NC NC FX:C level NC NC <1% (50%‐150%) 40% (50%‐150%) Abbreviations: APTT, activated partial thromboplastin time; APTTC, APTT control; CRP, C‐reactive protein; Hb, hemoglobin; HCT, hematocrit; NC, Not checked; PT, prothrombin time; PTC, PT control; RBC, red blood cell; WBC, white blood cell. a Hematological test normal ranges are extracted from Rodak's Hematology: Clinical Principles and Applications, 5th Ed (2016). b Normal values are placed in parentheses. COVID‐19 is an emerging medical challenge that can present more difficulties for those with special conditions, such as pregnant women and newborns. Due to alterations in cellular immunity, pregnant women are more prone to infection by intracellular pathogens like viruses.6 The fetus is also highly susceptible to infection due to immaturity of the immune system.7 Furthermore, the mother's (heterozygote) congenital coagulopathy and that of her newborn (homozygote) were additional potential risk factors, because a disrupted coagulation system is a prominent feature of SARS‐CoV‐2 infection.8 To date, FX deficiency in a newborn has not been cited anywhere as a special condition requiring close attention in the case of SARS‐CoV‐2 infection. According to the few reports to date, SARS‐CoV‐2 infection is a risk factor for severe maternal morbidity. It is worth noting that most of those mothers were discharged without complications.9 From a clinical aspect, fever was the most common symptom (68%) at the time of admission.9 This was also observed in the affected woman of this study. SARS‐CoV‐2 infection can even affect the type of delivery. A systematic review of these women showed that about 92% of deliveries were by cesarean section, less than 10% being the usual vaginal delivery (7 of 85). Fetal distress was mentioned as the most common indication for cesarean section. Our patient underwent a planned cesarean section, due to her previous history. The delivery itself was uneventful, and a healthy baby was delivered, while among other reported cases, a number of complications have been noted.9 As with most other reports, the infant did not have any symptoms at the time of delivery and was discharged the day after birth.9 In a case series of 10 patients, various first clinical presentations were observed, including shortness of breath (n = 6), fever (n = 2), vomiting (n = 1), and rapid heart rate (n = 1).10 In the case at hand, bloody vomiting was the first clinical presentation. In the same case series, one died due to refractory shock, multiple organ failure (MOF), and disseminated intravascular coagulation (DIC). Another patient with severe presentation was managed by intravenous infusions of gamma globulin, platelets, and plasma, which was suggestive of the effectiveness of gamma globulin in severe cases. The author recommended early use of intravenous gamma globulin for passive immunization.10 GI bleeding in our case was successfully managed by administration of FFP and TXA. In addition to thrombotic complication, bleeding is not infrequent in patients affected by COVID‐19, with GI bleeding seemingly the most common hemorrhagic manifestation among adults. GI bleeding, with a frequency of 40%, was observed among neonates from affected mothers.3 On the other hand, GI bleeding is also a relatively common presentation among severely FX deficient patients.1, 2 In fact, GI bleeding can occur in children with severe FX deficiency within the first months of life. It seems that such patients are prone to experience severe bleeding, such as ICH, later in life, in the absence of an appropriate therapeutic strategy, most likely preventative regular secondary prophylaxis.1, 2 In one study of 102 patients with congenital FX deficiency, GI bleeding has been reported in 12% of symptomatic cases.1 In this case, with GI bleeding being a common presentation of SARS‐CoV‐2 infection and congenital FX deficiency, it cannot definitively be attributed to one or the other. Close monitoring of such cases is necessary to decrease related adverse consequences. Although it seems that COVID‐19 is less severe in adults with CBDs, it is a less‐known issue among children and newborns with CBDs. Further reports and studies could provide clarity. Due to their severe bleeding tendency, close monitoring of patients with severe congenital FX deficiency is mandatory, even without potential SARS‐CoV‐2 infection. And close monitoring of neonates with infected mothers is mandatory to prevent severe consequences. Patients with concomitant infection with SARS‐CoV‐2 require even more rigorous preventative and supportive care. ACKNOWLEDGEMENTS We highly appreciate Daisy Morant's valuable aid in improving the English Language of this manuscript. The study was supported and approved by Shahid Beheshti University of Medical Sciences. CONFLICT OF INTEREST The authors have no competing interests. AUTHOR CONTRIBUTIONS A. Dorgalaleh designed the work, performed laboratory analysis, and wrote the manuscript. F Ghazizadeh, M. Baghaipour, A. Dabbagh, Gh. Bahoush, and N Baghaipour performed clinical studies. Sh. Tabibian, M. Jazebi, N. Baghaipour, M. Bahraini, A. Fazeli, and F. Yousefi performed laboratory analysis. All the authors approved the submission

    Radical stereotactic radiosurgery with real-time tumor motion tracking in the treatment of small peripheral lung tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments in radiotherapeutic technology have resulted in a new approach to treating patients with localized lung cancer. We report preliminary clinical outcomes using stereotactic radiosurgery with real-time tumor motion tracking to treat small peripheral lung tumors.</p> <p>Methods</p> <p>Eligible patients were treated over a 24-month period and followed for a minimum of 6 months. Fiducials (3–5) were placed in or near tumors under CT-guidance. Non-isocentric treatment plans with 5-mm margins were generated. Patients received 45–60 Gy in 3 equal fractions delivered in less than 2 weeks. CT imaging and routine pulmonary function tests were completed at 3, 6, 12, 18, 24 and 30 months.</p> <p>Results</p> <p>Twenty-four consecutive patients were treated, 15 with stage I lung cancer and 9 with single lung metastases. Pneumothorax was a complication of fiducial placement in 7 patients, requiring tube thoracostomy in 4. All patients completed radiation treatment with minimal discomfort, few acute side effects and no procedure-related mortalities. Following treatment transient chest wall discomfort, typically lasting several weeks, developed in 7 of 11 patients with lesions within 5 mm of the pleura. Grade III pneumonitis was seen in 2 patients, one with prior conventional thoracic irradiation and the other treated with concurrent Gefitinib. A small statistically significant decline in the mean % predicted DLCO was observed at 6 and 12 months. All tumors responded to treatment at 3 months and local failure was seen in only 2 single metastases. There have been no regional lymph node recurrences. At a median follow-up of 12 months, the crude survival rate is 83%, with 3 deaths due to co-morbidities and 1 secondary to metastatic disease.</p> <p>Conclusion</p> <p>Radical stereotactic radiosurgery with real-time tumor motion tracking is a promising well-tolerated treatment option for small peripheral lung tumors.</p

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival. Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (USMR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index. Findings Global U5MR decreased from 71.2 deaths per 1000 livebirths (95% uncertainty interval WI] 68.3-74-0) in 2000 to 37.1 (33.2-41.7) in 2019 while global NMR correspondingly declined more slowly from 28.0 deaths per 1000 live births (26.8-29-5) in 2000 to 17.9 (16.3-19-8) in 2019. In 2019,136 (67%) of 204 countries had a USMR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030,154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9.65 million (95% UI 9.05-10.30) in 2000 and 5.05 million (4.27-6.02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3.76 million 95% UI 3.53-4.021) in 2000 to 48% (2.42 million; 2.06-2.86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0.80 (95% UI 0.71-0.86) deaths per 1000 livebirths and U5MR to 1.44 (95% UI 1-27-1.58) deaths per 1000 livebirths, and in 2019, there were as many as 1.87 million (95% UI 1-35-2.58; 37% 95% UI 32-43]) of 5.05 million more deaths of children younger than 5 years than the survival potential frontier. Interpretation Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve USMR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Public housing, intersectoral competition, and urban ground rent: Iran’s first public housing program that never was

    No full text
    This paper investigates the structural political economic drivers of the housing market in urban Iran and the ways in which social and economic dynamics of the housing sector are rooted in peculiarities of Iranian capitalism, characterized by a relatively small public economy, low productivity of capital, and an underdeveloped financial system. The paper examines these processes and mechanisms in the light of the illustrative case of the country’s first and largest state-led housing program, the Mehr Housing Program (MHP). The paper argues that the program’s failure is due primarily to the state’s market-oriented approach toward housing. The MHP’s units were sold at their market prices, and the state subsidized the land to the developers with low rent, facilitating investments. Utilizing an intersectoral and multi-scalar analytical framework, we further argue that what drives the investment is absolute ground rent present in the housing sector due to its labor-intensive character. The high level of rent is due to persistently low profitability in the manufacturing sector and, subsequently, excess profits in construction and housing. Thus, rent-seeking investors tend to invest in housing. These peculiarities of the Iranian economy determined the trajectory and thefailure of the MHP as a public housing initiative

    Spatial inequality in Tehran, a structural explanation

    No full text
    The study presents a political economic analysis of spatial inequality in Tehran focusing on four sectors of social reproduction, namely, housing, healthcare, education, and transportation. The study argues that spatial inequality is rooted in the peculiarities of Iranian capitalism. Struggling with low productivity, the manufacturing sector needs wages to remain low and unemployment to remain high in order to maintain profits. Bringing urban amenities and resources into the market is the second strategy, a process facilitated by the state. The study also discusses the role of the luxury market in neutralising the anticipated negative feedback mechanism of low effective demand

    Socio-spatial inequality in Tehran, a structural explanation

    No full text
    The study presents a political economic analysis of socio-spatial inequality in Tehran focusing on four sectors of social reproduction, namely, housing, healthcare, education, and transportation. The existing analyses of socio-spatial inequality in Tehran by Iranian social scientists see the problem as a technical matter and criticize e.g. bad planning, poor policy-making, undemocratic state, and corruption. Political economic structures behind the inequalities, however, have not been addressed. Two theoretical models are discussed. Model 1 is derived from the existing analyses by prominent Iranian social scientists discussed above. Model 2 is derived from the works by political economic geographers such as David Harvey. The paper maintains that the urbanization processes, aside from being planetary in character, are highly variegated in historical and geographical contexts. The paper, therefore, proposes a dialectical approach for analysis. Using a modified version of Model 2, the paper argues socio-spatial inequality in the city is rooted in peculiarities of Iranian capitalism. Low productivity in the manufacturing sector requires lowering the value of labor power in order to maintain profit. Prolonging the working day and cutting wages have reached their biophysical limits for the labor and investment in urban space and built environments is a resulting strategy for the rent-seeking capitalists. Iranian marketized state performs as a facilitator (rather than a regulator) in urbanization process. The study also discusses the role of luxury market in neutralizing the anticipated negative feedback mechanism of low social demand
    corecore