100 research outputs found

    Topological superconductivity in helical crystals

    Full text link
    We study superconductivity and surface Andreev bound states in helical crystals. We consider the interlayer pairings along the helical hopping and investigate the surface local density of states on the (001) and zigzag surfaces for all the possible irreducible representations. There are three and four irreducible representations exhibiting the zero energy peaks in the local density of states at the (001) and zigzag surfaces of helical lattices, respectively. By calculating the one dimensional winging number, we show that these appearances of the zero energy peaks stem from the surface Andreev bound states

    Rapid contemporary evolution and clonal food web dynamics

    Full text link
    Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans, and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator-prey system with two prey genotypes, parameterized with data on a well-studied experimental system, and explore how the extent of differences in defense against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary "details" that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species.Comment: 30 pages, 6 Figure

    Cryptic Population Dynamics: Rapid Evolution Masks Trophic Interactions

    Get PDF
    Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components) is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution

    Cryptic Population Dynamics: Rapid Evolution Masks Trophic Interactions

    Get PDF
    Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components) is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution

    Characterization of the novel mutant A78T-HERG from a long QT syndrome type 2 patient: Instability of the mutant protein and stabilization by heat shock factor 1

    Get PDF
    Background:The human ether-a-go-go-related gene (HERG) encodes the α-subunit of rapidly activating delayed-rectifier potassium channels. Mutations in this gene cause long QT syndrome type 2 (LQT2). In most cases, mutations reduce the stability of the channel protein, which can be restored by heat shock (HS). Methods: We identified the novel mutant A78T-HERG in a patient with LQT2. The purpose of the current study was to characterize this mutant protein and test whether HS and heat shock factors (HSFs) could stabilize the mutant protein. A78T-HERG and wild-type HERG (WT-HERG) were expressed in HEK293 cells and analyzed by immunoblotting, immunoprecipitation, immunofluorescence, and whole-cell patch clamping. Results: When expressed in HEK293 cells, WT-HERG gave rise to immature and mature forms of the protein at 135 and 155 kDa, respectively. A78T-HERG gave rise only to the immature form, which was heavily ubiquitinated. The proteasome inhibitor MG132 increased the expression of immature A78T-HERG and increased both the immature and mature forms of WT-HERG. WT-HERG, but not A78T-HERG, was expressed on the plasma membrane. In whole-cell patch clamping experiments, depolarizing pulses evoked E4031-sensitive HERG channel currents in cells transfected with WT-HERG, but not in cells transfected with A78T-HERG. The A78V mutant, but not A78G mutant, remained in the immature form similarly to A78T. Maturation of the A78T-HERG protein was facilitated by HS, expression of HSF-1, or exposure to geranyl geranyl acetone. Conclusions: A78T-HERG was characterized by protein instability and reduced expression on the plasma membrane. The stability of the mutant was partially restored by HSF-1, indicating that HSF-1 is a target for the treatment for LQT2 caused by the A78T mutation in HERG

    Natural capitals for nature’s contributions to people: the case of Japan

    Get PDF
    Recently, natural capital has gained the attention of researchers and policymakers to promote sustainability. Previous studies have investigated the value of ecosystem services with respect to specific areas or species. Other studies have investigated the value of various types of ecosystem services and natural capital by integrating a number of findings using meta-analyses at the global level. Although these studies have provided information on either the global value of natural capital or the local value of specific subjects, there is little evidence on the country-specific values of natural capital in Japan, which will provide useful information for national environmental policies. We investigated the perceived values of terrestrial and marine natural capital in Japan using internet surveys and payment card methods. Data on various natural forms of capital were collected in a unified format and comparable manner. We found that some explanatory variables, such as perceived importance and visit frequency, as well as sociodemographic characteristics, are significant drivers of the willingness to pay (WTP), which maintains each aspect of natural capital. In addition, we conducted future predictions of terrestrial and marine natural capital using a scenario developed in a previous study. Our results indicate that Japan should follow a population dispersed scenario for the sustainable management of natural capital up to 2050

    Spin-polarized proximity effect in superconducting junctions

    Get PDF
    We study spin dependent phonomena in superconducting junctions in both ballistic and diffusive regimes. For ballistic junctions we study both ferromagnet / ss- and d-wave superconductor junctions and two dimensional electron gas / s-wave superconductor junctions with Rashba spin-orbit coupling. It is shown that the exchange field alway suppresses the conductance while the Rashba spin-orbit coupling can enhance it. In the latter part of the article we study the diffusive ferromagnet / insulator / ss- and d-wave superconductor junctions, where the proximity effect can be enhanced by the exchange field in contrast to common belief. It is shown that the resonant proximity effect originating from the exchange field strongly influences the tunneling conductance and density of states.Comment: 14 pages, 7 figures, submitted to Comptes Rendus de l'Acadeacute;mie des Sciences (Comptes Rendus Physique) Special Issue " Magnetism and Superconductivity Coexistence". Figures 4-7 are modified in v

    Detection of Transgenes in Gene Delivery Model Mice by Adenoviral Vector Using ddPCR

    Get PDF
    With the rapid progress of genetic engineering and gene therapy, the World Anti-Doping Agency has been alerted to gene doping and prohibited its use in sports. However, there is no standard method available yet for the detection of transgenes delivered by recombinant adenoviral (rAdV) vectors. Here, we aim to develop a detection method for transgenes delivered by rAdV vectors in a mouse model that mimics gene doping. These rAdV vectors containing the mCherry gene was delivered in mice through intravenous injection or local muscular injection. After five days, stool and whole blood samples were collected, and total DNA was extracted. As additional experiments, whole blood was also collected from the mouse tail tip until 15 days from injection of the rAdv vector. Transgene fragments from different DNA samples were analyzed using semi-quantitative PCR (sqPCR), quantitative PCR (qPCR), and droplet digital PCR (ddPCR). In the results, transgene fragments could be directly detected from blood cell fraction DNA, plasma cell-free DNA, and stool DNA by qPCR and ddPCR, depending on specimen type and injection methods. We observed that a combination of blood cell fraction DNA and ddPCR was more sensitive than other combinations used in this model. These results could accelerate the development of detection methods for gene doping
    corecore