3,784 research outputs found
Record-breaking earthquake intervals in a global catalogue and an aftershock sequence
For the purposes of this study, an interval is the elapsed time between two earthquakes in a designated region; the minimum magnitude for the earthquakes is prescribed. A record-breaking interval is one that is longer (or shorter) than preceding intervals; a starting time must be specified. We consider global earthquakes with magnitudes greater than 5.5 and show that the record-breaking intervals are well estimated by a Poissonian (random) theory. We also consider the aftershocks of the 2004 Parkfield earthquake and show that the record-breaking intervals are approximated by very different statistics. In both cases, we calculate the number of record-breaking intervals (<i>n</i><sub>rb</sub>) and the record-breaking interval durations &Delta;<i>t</i><sub>rb</sub> as a function of "natural time", the number of elapsed events. We also calculate the ratio of record-breaking long intervals to record-breaking short intervals as a function of time, <i>r(t)</i>, which is suggested to be sensitive to trends in noisy time series data. Our data indicate a possible precursory signal to large earthquakes that is consistent with accelerated moment release (AMR) theory
Urine THC Metabolite Levels Correlate with Striatal D2/D3 Receptor Availability
poster abstractRationale: Although the incidence of cannabis abuse/dependence in Americans is rising, the neurobiology of cannabis addiction is not well understood. Recent imaging studies have demonstrated deficits in striatal D2/D3 receptor availability in several substance-dependent populations. However, this has not been studied in chronic cannabis users.
Objective: The purpose of this study was to compare striatal D2/D3 receptor availability between currently using chronic cannabis users and healthy controls.
Methods: Eighteen right-handed males, age 18-35 were studied. Ten subjects were chronic cannabis users; eight were demographically matched controls. Subject eligibility was determined during a screening interview, which included SCID-I and SCID-II assessments, self-report of past substance use, and drug toxicology screening. Subjects underwent a [11C]raclopride (RAC) PET scan; striatal RAC binding potential (BPND) was calculated on a voxel-wise basis with the multilinear reference tissue method. Prior to scanning, urine samples were obtained from cannabis users for quantification of urine Δ-9-tetrahydrocannabinol (THC) and THC metabolites (11-nor-Δ-9-THC-9-carboxylic acid; THC-COOH). Statistical analyses were conducted at voxel-wise level within the striatum. Two-sample t-tests were used to test for differences in BPND between groups. For cannabis subjects, multiple regression analyses were used to test for correlations between striatal BPND and urine THC/THC metabolite levels.
Results: There were no differences in BPND between cannabis smokers and healthy controls. Smokers – regardless of substance – had 10% lower D2/D3 availability than non-smokers. Voxel-wise analyses revealed that striatal RAC BPND values were associated with urine levels of cannabis metabolites.
Conclusions: Cannabis and cannabis metabolites in urine, markers of recent cannabis consumption, are negatively correlated with striatal RAC BPND. This provides the first evidence that degree of cannabis use is related to changes in the central DA system. Low BPND in both cannabis and cigarette users may indicate a deficiency in D2/D3 receptors as a function of chronic exposure to either or both substances. Alternatively, endogenous dopamine levels may be higher in smokers as a result of MAO inhibition from beta-carbolines in the inhaled smoke. Additional studies are needed to understand the complex relationships between chronic cannabis use and the dopamine system
Dressed Spin of Polarized 3He in a Cell
We report a measurement of the modification of the effective precession
frequency of polarized 3He atoms in response to a dressing field in a room
temperature cell. The 3He atoms were polarized using the metastability
spin-exchange method. An oscillating dressing field is then applied
perpendicular to the constant magnetic field. Modification of the 3He effective
precession frequency was observed over a broad range of the amplitude and
frequency of the dressing field. The observed effects are compared with
calculations based on quantum optics formalism.Comment: 10 pages, 4 figure
Extrasolar planets and brown dwarfs around A-F type stars - VII. Theta Cygni radial velocity variations: planets or stellar phenomenon?
(abridged) In the frame of the search for extrasolar planets and brown dwarfs
around early-type main-sequence stars, we present the results obtained on the
early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the
spectra. Our dedicated radial-velocity measurement method was used to monitor
the star's radial velocities over five years. We also use complementary, high
angular resolution and high-contrast images taken with PUEO at CFHT. We show
that Theta Cygni radial velocities are quasi-periodically variable, with a
~150-day period. These variations are not due to the ~0.35-Msun stellar
companion that we detected in imaging at more than 46 AU from the star. The
absence of correlation between the bisector velocity span variations and the
radial velocity variations for this 7 km/s vsini star, as well as other
criteria indicate that the observed radial velocity variations are not due to
stellar spots. The observed amplitude of the bisector velocity span variations
also seems to rule out stellar pulsations. However, we observe a peak in the
bisector velocity span periodogram at the same period as the one found in the
radial velocity periodogram, which indicates a probable link between these
radial velocity variations and the low amplitude lineshape variations which are
of stellar origin. Long-period variations are not expected from this type of
star to our knowledge. If a stellar origin (hence of new type) was to be
confirmed for these long-period radial velocity variations, this would have
several consequences on the search for planets around main-sequence stars, both
in terms of observational strategy and data analysis. An alternative
explanation for these variable radial velocities is the presence of at least
one planet of a few Jupiter masses orbiting at less than 1 AU. (abridged)Comment: 9 pages, accepted in A
Discovery and characterization of WASP-6b, an inflated sub-Jupiter mass planet transiting a solar-type star
We report the discovery of WASP-6b, an inflated sub-Jupiter mass planet transiting every 3.3610060^{\rm + 0.0000022 }_ days a mildly metal-poor solar-type star of magnitude V = 11.9. A combined analysis of the WASP photometry, high-precision followup transit photometry and radial velocities yield a planetary mass M_{\rm p} = 0.503^_ and radius R_{\rm p} = 1.224^_ , resulting in a density . The mass and radius for the host star are M_\ast = 0.88^_ and R_\ast = 0.870^_ . The non-zero orbital eccentricity e = 0.054^{\rm +0.018}_ that we measure suggests that the planet underwent a massive tidal heating ~1 Gyr ago that could have contributed to its inflated radius. High-precision radial velocities obtained during a transit allow us to measure a sky-projected angle between the stellar spin and orbital axis \beta = 11^_ deg. In addition to similar published measurements, this result favors a dominant migration mechanism based on tidal interactions with a protoplanetary disk
Hydration dynamics at fluorinated protein surfaces
Water-protein interactions dictate many processes crucial to protein function including folding, dynamics, interactions with other biomolecules, and enzymatic catalysis. Here we examine the effect of surface fluorination on water-protein interactions. Modification of designed coiled-coil proteins by incorporation of 5,5,5-trifluoroleucine or (4S)-2-amino-4-methylhexanoic acid enables systematic examination of the effects of side-chain volume and fluorination on solvation dynamics. Using ultrafast fluorescence spectroscopy, we find that fluorinated side chains exert electrostatic drag on neighboring water molecules, slowing water motion at the protein surface
State of Climate 2011 - Global Ocean Phytoplankton
Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zon
Alignment dependent chemisorption of vibrationally excited CH4(ν3) on Ni(100), Ni(110), and Ni(111)
International audienceWe present a stereodynamics study of the dissociative chemisorption of vibrationally excited methane on the (100), (110), and (111) planes of a nickel single crystal surface. Using linearly polarized infrared excitation of the antisymmetric C-H stretch normal mode vibration (ν3), we aligned the angular momentum and C-H stretch amplitude of CH4(ν3) in the laboratory frame and measured the alignment dependence of state-resolved reactivity of CH4 for the ν3 = 1, J = 0-3 quantum states over a range of incident translational energies. For all three surfaces studied, in-plane alignment of the C-H stretch results in the highest dissociation probability and alignment along the surface normal in the lowest reactivity. The largest alignment contrast between the maximum and minimum reactivity is observed for Ni(110), which has its surface atoms arranged in close-packed rows separated by one layer deep troughs. For Ni(110), we also probed for alignment effects relative to the direction of the Ni rows. In-plane C-H stretch alignment perpendicular to the surface rows results in higher reactivity than parallel to the surface rows. The alignment effects on Ni(110) and Ni(100) are independent of incident translational energy between 10 and 50 kJ/mol. Quantum state-resolved reaction probabilities are reported for CH4(ν3) on Ni(110) for translational energies between 10 and 50 kJ/mol
- …
