
Nonlin. Processes Geophys., 17, 169–176, 2010
www.nonlin-processes-geophys.net/17/169/2010/
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Nonlinear Processes
in Geophysics

Record-breaking earthquake intervals in a global catalogue and
an aftershock sequence

M. R. Yoder1, D. L. Turcotte2, and J. B. Rundle1,2,3

1Department of Physics, University of California, Davis, California, 95616, USA
2Department of Geology, University of California, Davis, California, 95616, USA
3Santa Fe Institute, Santa Fe, New Mexico 87501, USA

Received: 29 October 2009 – Revised: 14 January 2010 – Accepted: 18 January 2010 – Published: 31 March 2010

Abstract. For the purposes of this study, an interval is the
elapsed time between two earthquakes in a designated re-
gion; the minimum magnitude for the earthquakes is pre-
scribed. A record-breaking interval is one that is longer
(or shorter) than preceding intervals; a starting time must
be specified. We consider global earthquakes with magni-
tudes greater than 5.5 and show that the record-breaking in-
tervals are well estimated by a Poissonian (random) theory.
We also consider the aftershocks of the 2004 Parkfield earth-
quake and show that the record-breaking intervals are ap-
proximated by very different statistics. In both cases, we cal-
culate the number of record-breaking intervals (nrb) and the
record-breaking interval durations1trb as a function of “nat-
ural time”, the number of elapsed events. We also calculate
the ratio of record-breaking long intervals to record-breaking
short intervals as a function of time,r(t), which is suggested
to be sensitive to trends in noisy time series data. Our data
indicate a possible precursory signal to large earthquakes that
is consistent with accelerated moment release (AMR) theory.

1 Introduction

A record-breaking event is defined to be one that is larger
(or smaller) than all previous events. A typical example is
the sequence of record-breaking temperatures (either highest
or lowest) on a specified day of the year at a specified mon-
itoring station. The rate at which records are broken is an
important characteristic of the sequence; studies involve both
the number of record-breaking temperatures and their values.
The ratio of the number of record-breaking high temperatures
to record-breaking low temperatures has been been inter-
preted as a measure of global warming (Meehl et al., 2009).
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Tata(1969) introduced a basic theory of record-breaking
statistics for events that occur randomly. Tata’s paper ad-
dressed record-breaking statistics for a sequence of variables
drawn from a continuous, independent identically distributed
(iid) process.Glick (1978) published several applications of
Tata’s method, including a brief study of daily temperatures.
Benestad(2004, 2008) andRedner and Petersen(2006) fur-
ther developed meteorological applications in the context of
global warming;Vogel et al.(2001) applied the method to
flooding in the United States, andVan Aalsburg et al.(2010)
applied the method to global earthquake magnitudes.

Time series, such as maximum or minimum temperatures
on a specified day of the year, are not truly random (iid) se-
quences. Important deviations include temporal correlations
and temporal trends. Temporal correlations, in many nat-
urally occuring time series, exhibit long-range correlations
and self affinity (Turcotte, 1997). A standard measure of
these correlations is the power-law dependence of the power
spectral densityS on frequencyf

S ∼ f −β (1)

If β = 0, the time series is a white noise, comprised of a
random (iid) sequence of values. In the range 0< β < 1
the correlations are weak and the time series is weakly sta-
tionary. For the daily time series of temperatures, we typi-
cally observeβ ≈ 0.5, a Hurst exponent,Hu ≡

(β+1)
2 = 0.75

(Pelletier and Turcotte, 1999). Simulations show that for this
value of β the iid theory of record-breaking statistics is a
good approximation for the weakly correlated time series.

A second deviation of a time series from a random (iid)
sequence involves a trend in the expected values. Simu-
lations show that record-breaking statistics are sensitive to
such trends. A specific example is the association of record-
breaking temperature statistics with global warming.Benes-
tad(2004, 2008) studied monthly maximum temperatures on
a global basis. The number of record-breaking temperatures
were determined both with time running forward and with
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time running backwards. Significantly more forward record-
breaking temperatures were found than backward record-
breaking temperatures. This ratio can be quantitatively re-
lated to global warming.Redner and Petersen(2006) con-
ducted a similar study, calculating the numbers of record
breaking maximum and minimum temperatures in Philadel-
phia for each day of the year over a 120-year period. They
present a framework for record-breaking climatological anal-
ysis.

The concept of record-breaking events can also be ap-
plied to earthquakes. A catalogue, study area, starting time
and minimum magnitude must be specified.Van Aalsburg
et al.(2010) considered record-breaking magnitudes of earth-
quakes in the global Centroid Moment Tensor (CMT) cat-
alogue with moment magnitudeMW ≥ 5.5 over fifteen se-
quential, non-overlapping two-year periods between 1977
and 2006. For their study, a record-breaking earthquake mag-
nitude is greater (or smaller) than the magnitude of any pre-
vious earthquake in the study region since the chosen start-
ing time. Van Aalsburg et al.(2010) showed that the mean
numbers of record-breaking earthquake magnitudes (nrb) and
mean record-breaking magnitudes (Mrb), determined from
the CMT catalogue, agree closely with the iid theory.

The primary purpose of this paper is to determine whether
record-breaking statistics can distinguish background se-
quences of main-shocks from correlated aftershocks. Be-
cause the frequency-magnitude distributions of main shocks
and aftershocks are very similar, if not identical, record-
breaking magnitude statistics cannot be used to separate the
two classes of earthquakes. Instead, we will utilize the
record-breaking interval statistics.

We construct catalogues by selecting all earthquakes
within a region, with magnitudes greater than a specified
minimum value. We consider the sequence of interval times
between successive earthquakes in our catalogues. Record-
breaking long intervals are the sequence of interval times
longer than any previous interval times. Record-breaking
short intervals are the sequence of interval times shorter than
any previous interval times. The interval between the first
and second earthquake is, by definition, the first record-
breaking long interval. The next interval, longer than this
interval, is the second record-breaking long interval, and so
on. Similarly, the first interval, between the first and second
earthquakes, is by definition also the first record-breaking
short interval. The next interval shorter than this interval is
the second record-breaking short interval, and so on. Inter-
vals can be taken either forward or backward in time. We first
consider global earthquakes with magnitudes greater than 5.5
and show that the record-breaking intervals are well esti-
mated by a Poissonian (random) theory. In this case, the
number of record-breaking long intervals (nrb-long) are sta-
tistically identical to the number of record-breaking short in-
tervals (nrb-short).

We also consider the aftershocks of the 2004 Parkfield
earthquake and show that the record-breaking intervals are
characterised by very different statistics. Because of the ap-
plicability of Omori’s law, the interval times in an aftershock
sequence become systematically longer. Thus, after the main
shock, there are many more record-breaking long intervals
than record-breaking short intervals (nrb-long> nrb-short).

For both the sequence of global earthquakes and the se-
quence of aftershocks, we first determine the number of
record-breaking intervalsnrb, both long and short (nrb-long
and nrb-short, respectively) as a function of “natural time”
n, the number of elapsed intervals. Second, we determine
the record-breaking interval durations,1trb, both long and
short (1trb-long and1trb-short) as a function of “natural time”
n. Third, we calculate the ratio of the number of record-
breaking long intervals to the number of record-breaking
short intervals as a function of timer(t), which is suggested
to be sensitive to trends in noisy time series data (Benestad,
2004, 2008; Redner and Petersen, 2006). We will also show
that our data indicate a possible precursory signal to large
earthquakes that is consistent with the accelerated moment
release (AMR) theory.

2 Record-breaking intervals in the CMT global catalog

We first calculate the record-breaking statistics of earth-
quake intervals for global earthquakes during the period
January 1977–December 2006. We consider earthquakes
with MW≥5.5 from the CMT catalogue over windows of
n=1024 intervals. Initially, we consider the 1024 intervals
between the first 1025 earthquakes. Within this sub-
sequence, we calculate the number of record-breaking long
and record-breaking short intervals (nrb-long and nrb-short)
separately for eachni = 2i(i=0,1,2,...,10) elapsed inter-
vals. Similarly, we calculate the record-breaking long
and record-breaking short interval durations (1trb-long and
1trb-short) as a function ofni . We advance the window one
event at a time and repeat the above procedure to obtain
10 592 values fornrbi and1trbi (both long and short) for each
ni . We then determine the means and standard deviations of
nrbi and1trbi , for both the longest and shortest intervals in
the sequences. The mean values ofnrb as a function of the
number of elapsed events (natural time)n are given in Fig.1.
Results are given for both longest record-breaking and short-
est record-breaking interval times. The two results are almost
identical and〈nrb〉 ∼ ln(n) appears to be a good approxima-
tion. The mean lengths of both longest and shortest record-
breaking intervals〈1trb〉 and their standard deviations are
given as a functionn in Fig. 2. Again,〈1trb〉 ∼ ln(n) appears
to be a good approximation.

Next, we generate a synthetic catalogue of random event
intervals. To do this, we utilize the cumulative distribution of
the interval times in a homogeneous Poisson process (HPP)
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Fig. 1. Mean numbers of record-breaking intervals〈nrb〉 and their
standard deviations are given as a function of event numbern (nat-
ural time). Results are given for the longest and shortest intervals
from the CMT catalogue and the synthetic random catalogue. Also
included is the theoretical prediction for an iid process from Eq. (4).

given by

F (1t) = 1−e
−

1t
〈1t〉 (2)

We consider a sequence of intervals with the same number
of events as the CMT catalogue that we used. For each inter-
val, we determineF(1t) as a random number in the range
0 to 1 and solve Eq. (2) for the corresponding random inter-
val 1t . The mean record-breaking numbers,〈nrb〉, and time
intervals,〈1trb〉, are calculated from the synthetic catalogue
as described above and included in Figs. 1 and 2. The CMT
catalogue results are in good agreement with the random sim-
ulations.

3 Record-breaking events of an independent,
identically distributed (iid) process

We will now show that the numbers of record-breaking in-
tervals〈nrb(n)〉, as a function of the number of intervalsn,
as given in Fig.1, is well approximated by the statistical
analysis of a random process. The basic theory for random
record-breaking events was developed byTata (1969) and
was clearly explained byGlick (1978). Their results are valid
for any random process that has a continuous distribution of
values; the results are independent of the particular distribu-
tion of values. We will apply this iid analysis both to the
distribution of maximum intervals and to the distribution of
minimum intervals.

We consider a sequence of random values,xi (i =

1,2,...,n), selected from a continuous distribution. The first

Fig. 2. Mean lengths of record-breaking intervals〈1trb〉 and their
standard deviations are given as a function of event numbern

(natural time). Results are given for the longest and shortest inter-
vals from the CMT catalogue and the synthetic random catalogue.

element is always a record-breaking event. The second vari-
able is larger or smaller than the first, with equal probability:

prb(2) =
1

2
(3)

Because the sequence is random, the probability that any
one elementxi occupies thej -th (j∈i) position is 1/n. For
n = 2, the probability that the larger element terminates the
sequence is 1/2. Forn = 3, the probability that the final el-
ement is the largest (or smallest) value is 1/3. Accordingly,
the expected number of record-breaking events〈nrb〉 in an iid
sequence is:

〈nrb〉n = 1+1/2+1/3+ ...+1/n (4)

For largen, we have approximately

〈nrb〉n ≈ γ + ln(n) (5)

whereγ = 0.577215 is the Euler-Mascheroni constant. For
example, withn = 100 we have〈nrb(100)〉 = 5.187 from
Eq. (4) or 〈nrb(100)〉 = 5.183 from Eq. (5). Even forn = 4,
we have〈nrb(4)〉 = 2.08 from Eq. (4) and 〈nrb(4)〉 = 1.96
from Eq. (5). It must be emphasized that the values given
in Eqs. (4) and (5) represent the expected mean values for
many realizations;Vogel et al.(2001) provide a more thor-
ough analysis of the statistical moments of record-breaking
sequences. The values from Eq. (4) are also included in
Fig. 1 and are seen to be in good agreement with the global
earthquake values and the random simulations.
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Fig. 3. Earthquakes included in the Parkfield aftershock catalogue
are enclosed by the red ellipse and events occurred after the 28
September 2004 mainshock (MW = 5.96); epicenter 35.818◦ N,
−120.366◦ W, inclined 50◦ south of east (Shcherbakov et al., 2006).

4 Record-breaking intervals in the 2004 Parkfield
aftershock sequence

Next, we consider the statistics of record-breaking maximum
intervals in an aftershock sequence. As a specific exam-
ple, we consider the 2004 Parkfield, CA earthquake. We
expect record-breaking behaviour in an aftershock sequence
to deviate substantially from the stationary Poisson process.
Specifically, we expect intervals to increase in time, when
time is measured forward, according to the modified form of
Omori’s law (Shcherbakov et al., 2006)

dn

dt
=

1

τ (mc)
·

1

[1+ t/c(mc)]p
(6)

wheren is the number of aftershocks as a function of timet

after the main shock andτ(mc) andc(mc) are characteristic
times obtained empirically from the data and depend on the
minimum magnitude,mc, considered.

We use the same definition of Parkfield aftershocks given
by Shcherbakov et al.(2006). These are illustrated in Fig.3;
for this study, we obtained interval data from the Advanced
National Seismic System (ANSS) catalogue. We start count-
ing events from 0.01 day after the main-shock, to mitigate
the effects of early aftershocks being masked by the coda of
the main-shock, and measure time forward through 6 April

2009. We consider the record-breaking maximum intervals
from a single pass through the entire aftershock sequence for
minimum aftershock magnitude thresholds ofmc = 1.5,2.0,

and 2.5. The numbers of record-breaking maximum intervals
nrb and the lengths of the record-breaking maximum inter-
vals1trb are given as functions of the number of aftershocks
n (natural time) in Figs.4 and5, respectively. To a first ap-
proximation,nrb ∼ n and1trb ∼ exp(αn) (whereα is a fitting
constant), in strong contrast tonrb ∼ ln(n) and1trb ∼ ln(n)

shown for global earthquakes in Figs.1 and2.

5 Non-Homogeneous Poisson Processes (NHPP)

The probability of some interval duration1t = ti+1 − ti is
equal to the probability that zero events occurred between
times ti+1 and ti . For a Poisson process, the cumulative
probability distribution function (CDF) can be expressed as
(Ross, 2003; Shcherbakov et al., 2005; Yakovlev et al.):

F (1ti,ti) = 1−e−
∫ 1ti

0 λ(ti+v)dv (7)

whereλ(v) is a rate. For the special case whereλ(v) = λ0,
a constant, we recover the homogeneous Poisson process
(HPP), Eq. (4), whereλ0 = 1/〈1t〉. Whenλ is not constant,
we say the Poisson process is non-homogeneous.

Substituting Omori’s Law, Eq. (6), for λ(v) into Eq. (7)
and assuming for simplicityp = 1, we integrate with the re-
sult

F (1t,t) =

(
c(mc)+ t +1t

c(mc)+ t

)−
c(mc)
τ (mc)

(8)

Solving for 1t and replacingF (1t,t) with u, a random
number in the range 0 to 1, we generate a time series from
the relation:

1t(t) =

(
u−τ(mc)/cm −1

)
·(c(mc)+ t) (9)

Taking the valuesτ(mc) andc(mc) for mc = 1.5, 2.0, and 2.5
fromShcherbakov et al.(2006), we produce a NHPP series of
interval times for the period considered above (Shcherbakov
et al., 2005, 2006). For eachmc, we find the mean and stan-
dard deviation ofnrb(n) and1trb(n) over 1000 simulations
and compare the results with the Parkfield data in Figs.4 and
5. In Fig. 4, the general dependence ofnrb on n is approxi-
mately the power law withnrb(n) ∼ n0.5±0.1 for the number
of longest record-breaking intervals as a function of the num-
ber of intervals. The deviation between the observed data
and the NHPP simulations can be attributed, in part, to af-
tershocks of aftershocks which we have not included in the
application of Omori’s law, Eq. (6). Clearly, a strong, late
aftershock can introduce a sequence of short intervals which
will delay the occurrence of the next record-breaking long
interval. In Fig.5 the general dependence of1trb on n is
approximately exponential,1trb(n) ∼ exp(αn), whereα is
a fitting constant for the length of longest record-breaking
intervals as a function of the number of elapsed intervals.
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Fig. 4. Numbers of record-breaking longest intervals,nrb, are given
as a function of event numbern (natural time). Results are given
for the Parkfield aftershock sequence, starting 0.01 days after the
main-shock, compared to a simulated non-homogeneous Poisson
process (NHPP). The blue, green and red points represent data from
the Parkfield aftershock sequence formc=1.5,2.0,2.5, respectively.
The solid lines and error bars of the same colour represent the
mean and standard deviation, over 1000 simulations, from the cor-
responding NHPP.

6 Record-breaking temperatures at the Mauna Loa
Observatory (MLO), Hawaii

As an example of relating record-breaking events to trends,
we will consider the statistics of the record-breaking maxi-
mum high and minimum low temperatures observed at the
NOAA MLO, Big Island, Hawaii for the period 1977–2006.
This observatory, remotely located and situated at an alti-
tude of 3397 m a.s.l., provides a wide range of atmospheric
data relatively unperturbed by local tropospheric, biospheric
and anthropogenic activities (NOAA, 2008). Keeling et al.
(1976) showed, from observations at MLO, that atmospheric
levels of CO2 are systematically increasing.

In this context, a new record-breaking high temperature
occurs when the maximum temperature for a given day is
higher than all subsequent maximum temperatures on that
calendar day. Similarly, a new record-breaking low tempera-
ture occurs when a day’s minimum temperature is lower than
all preceding minimum temperatures. For each calendar day
of the year, excluding leap years, we calculated the number
of record-breaking high and record-breaking low tempera-
tures since the same calendar day in 1976, our chosen start-
ing date. We then averaged over the 365 days of each year to
produce a mean number of record-breaking events as a func-
tion of time in one year increments:

〈nrb(year)〉 =
1

365

365∑
day=1

nrb,day(year) (10)

Fig. 5. Lengths of record-breaking longest intervals,1trb, are given
as a function of event numbern (natural time). Results are given for
the Parkfield aftershock sequence, starting 0.01 days after the main-
shock, compared to a simulated non-homogeneous Poisson process
(NHPP). The blue, green and red points represent data from the
Parkfield aftershock sequence formc = 1.5,2.0,2.5, respectively;
these data points are shifted 50 events to the right to further mitigate
seismographic anomalies in the coda. The solid lines and error bars
of the same colour represent the mean and standard deviation, over
1000 simulations, from the corresponding NHPP.

In Fig. 6, we show the mean numbers of record-
breaking maximum high temperatures〈nrb,max(t)〉 and
record-breaking minimum low temperatures〈nrb,min(t)〉 as
a function of time measured forward from 1977 to 2006.
Also included in Fig.6 are the predicted values for an iid
process from Eq. (4). We see that〈nrb,max(t)〉 is systemat-
ically greater than〈nrb,min(t)〉. Following Redner and Pe-
tersen(2006), we introduce the ratior of the values

r(t) =
〈nrb-max(t)〉

〈nrb-min(t)〉
(11)

Values of this ratio as a function of time measured forward
are given for the MLO data in Fig.7. We find a near constant
value in the range 1.13< r < 1.15 for the period 1977–2006,
indicating systematic global warming.

7 Ratios of record-breaking earthquake intervals

We now extend the concept of a ratio of record-breaking
temperatures introduced in Eq. (11) to sequences of earth-
quake interval times. We introduce the ratior(n,t) of
record-breaking longer intervals to record-breaking shorter
intervals

r (n,t) ≡
nrb-long(n,t)

nrb-short(n,t)
(12)

wheren is the number of events in the sequence,t is the
time at which the sequence terminates and, unless otherwise
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Fig. 6. Mean number of record-breaking maximum temperatures
〈nrb-max〉 and record-breaking minimum temperatures〈nrb-min〉

from MLO are given as a function of time measured forward from
1977 to 2006. Also included is the theoretical prediction for an iid
process from Eq. (4).

Fig. 7. Values of the ratior(t), defined in Eq. (11), from MLO are
given as a function of time measured forward from 1977 to 2006.

specified, we assume that time is measured forward. For our
global study, illustrated in Fig.1, we see that〈nrb-long(n,t)〉

is statistically identical to〈nrb-short(n,t)〉 for background
seismicity, sor(n,t) is expected to fluctuate around 1.
For our Parkfield study, illustrated in Fig.4, we see that
nrb-long(n,t) is systematically greater thannrb-short(n,t), so
r(n,t) is expected to be predominantly greater than 1. It may
be possible to use this difference to separate aftershocks from
background seismicity.

To explore this possibility, we consider earthquakes with
minimum magnitudemc > 1.5 and use a moving window of
256 intervals. We pick an event, an earthquake that occurred
at t = t0, and consider the 256 intervals between the preced-
ing 256 earthquakes. Starting with the first of these earth-
quakes, we obtain the number of record-breaking intervals

Fig. 8. The ratios of record-breaking longest intervals to record-
breaking shorter intervals,r(t), in the Parkfield aftershock sequence
(illustrated in Fig.3) with minimum magnitudemc>1.5 are shown
as a function of date. Large and small record breaking intervals are
counted forward starting from the 256-th interval preceding the in-
terval ending at the timet . Each value,r(n = 256,ti) is smoothed
by averaging over the preceding 16 values. Blue regions, where
r(n,t) > 1, imply aftershocks, or at least some form of decreasing
mean seismicity; red regions, wherer(n,t)< 1, suggest an increas-
ing rate of seismicity.

nrb-long(256,t0) andnrb-short(256,t0). We obtain the value of
r(256,t0), from Eq.12, and assign it to timet0. We repeat
this process with subsequent earthquakes,t > t0, to obtain a
time series,r(256,t0). We first consider the area of Parkfield
aftershocks defined in Fig.3. The values ofr as a function
of time are given in Fig.8. We see that, after the Parkfield
earthquake, the values ofr are predominantly greater than
unity, as expected.

We next consider earthquakes for the same period of time
and the same minimum magnitude in a 4◦

×4◦ region cen-
tered on the Parkfield epicenter. The values ofr as a function
of time are given in Fig.9; a random-like behaviour is clearly
illustrated. Using the broader catalogue, the Parkfield after-
shock is obscured, presumably by aftershocks from uncorre-
lated earthquakes. This is consistent with our expectations
from Figs.1 and4, which suggest that aftershock sequences
produce more large than small interval records compared to
a broader, background catalogue.

The variability and short periods ofr < 1 after the main-
shock, in Fig.6, presumably indicate aftershocks of events
in the primary aftershock sequence (aftershocks of after-
shocks). Of particular interest is the period preceding the
Parkfield main-shock where consistentlyr < 1. Early results
indicate thatr < 1 indicates some sort of precursory seis-
mic acceleration; further study will consider whether this is
a systematic phenomenon that can be quantified. It may be
possible to tune this method to resolve events of different

Nonlin. Processes Geophys., 17, 169–176, 2010 www.nonlin-processes-geophys.net/17/169/2010/



M. R. Yoder et al.: Record-breaking intervals 175

Fig. 9. Same as Fig.8 but for a 4◦×4◦ region centered on the Park-
field epicenter.

magnitudes by varying the number of events in the record-
breaking window or the spatial geometry of the area being
considered.

8 Conclusions

We have studied the record-breaking statistics of two very
different earthquake catalogues – a global dataset taken from
the CMT catalogue and an isolated aftershock sequence,
taken from the ANSS catalogue for the 2004 Parkfield earth-
quake. In each case, we find that the number of record-
breaking intervals is consistent with an established theory
and with simulations. Specifically, we find that the global
catalogue produces record-breaking behaviour that is well
estimated by a homogeneous Poisson process (HPP), where
nrb(n) ∼ ln(n). For an isolated aftershock sequence, in which
intervals become systematically longer with time, we find
thatnrb(n) ∼ n0.5±0.1, which is in reasonable agreement with
a non-homogeneous Poisson process (NHPP). Our results are
consistent with the sensitivity of record-breaking statistics to
trends, as discussed in the introduction. For the examples
given above, we have shown a strong distinction between the
record-breaking statistics of a large global earthquake cata-
logue and a well-defined aftershock sequence.

This method shows promise as a simple, computation-
ally efficient test for trends in time series data. In particu-
lar, we suggest that we can characterise a given catalogue of
earthquakes as being dominated by background, aftershock,
or possibly AMR seismicity. To separate correlated after-
shock sequences from a broader catalogue, one requires a
method to systematically select likely sub-catalogues, which
can then be tested by the methods described in this paper. In
the case of our Parkfield example, knowledge of the location

and geometry of the rupture was important for our anlysis.
To first order, aftershock sequences of many past events can
be isolated visually, by simply selecting spatially clustered
earthquakes in the vicinity of the epicentre and excluding
seismicity clustered around neighbouring large events; ellip-
tical regions appear to be a reasonable first estimate. Prelim-
inary record-breaking interval studies of the 1999 (M=7.1)
Hector Mine event suggest that this simple approach is suf-
ficient to produce convincing signal to noise in Eq. (12).
Numerical two point correlation methods might also be em-
ployed, and of course more complex geometries, for exam-
ple, ruptures on multiple faults, present greater challenges.
It may be possible to develop a method by which one starts
with a simple geometry and systematically adds and removes
events in order to optimize a correlation metric and converge
upon a complete aftershock catalogue.

Forecasting applications require more sophisticated, effi-
cient methods to locate possible rupture epicentres and ge-
ometries. Clearly, our successful retrospective forecast of the
2004 Parkfield earthquake, as one might interpret Fig.8 to
suggest, benefits from advance knowledge of the rupture epi-
center and geometry. Anticipating this geometry, however,
is non-trivial and has so far proven an unresolved obstacle to
AMR based forecasts. Calculating all rupture geometries at
all locations of a large map is computationally impractical,
and fault models are incomplete and unreliable indicators of
the locations of future epicentres. It might be possible to use
seismic rate-based hazard maps, for example, Relative In-
tensity (RI) or Pattern Infomatics (PI) (Holliday et al., 2006),
to reduce the problem to one that is computationally feasible.
Epicentres can be too constrained to “hot-spot” regions likely
to experience seismicity; the size of the rupture region, where
aftershocks and AMR are clustered, can be estimated as a
function of mainshock magnitude. Presumably, the record-
breaking sequencen is also related to the magnitude of the
event being forecast. Likely rupture geometries can be in-
ferred by convolving along clusters or contours of the hazard
map. Again, by adjusting the geometry of the region be-
ing analysed to optimize some metric, for example, Eq. (12),
it may be possible to converge upon the precise parameters
of likely rupture area geometries in advance of mainshocks.
In both the forecasting and retrospective cases, the simplic-
ity and computational efficiency of record-breaking methods
may contribute to the computational feasibility of compre-
hensive solutions.
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