63 research outputs found

    Biorefining Waste Sludge From Water and Sewage Treatment Plants Into Eco-Construction Material

    Get PDF
    This study aims to investigate the feasibility of using different waste sludge and coal combustion residuals in eco-concrete block production. The compressive strength of the eco-concrete blocks produced by waterworks sludge, bottom and fly ashes were 36 MPa, which comply with the standard specifications for paving blocks in Hong Kong. The optimal mixing proportion (by weight) of different materials in the blocks, such as aggregates, cementitious materials, water, and fly ash was 1.1:1.0:0.5:0.22, respectively. The environmental and toxicological impacts of the final products were then evaluated according to the toxicity characteristic leaching procedure (TCLP). While several heavy metals (i.e., Hg, Cu, and Pb) have been identified in the specimens, the levels of these contaminants complied with Standards (US 40 CFR 268.48). Waste materials generated from water and sewage treatment processes and power plants are feasible to be used as ingredients for paving concrete block production. These products are environmentally acceptable and mechanically suitable for resource recovery of waste materials

    Biodegradation of Ammonia in Biofiltration Systems: Changes of Metabolic Products and Microbial Communities

    Get PDF
    In the first stage, the feasibility of using the waste materials from coal power plants (i.e., coal slag) and landscapes (i.e., wood chip and compost) as packing media in various biofiltration systems for ammonia (NH3) removal was investigated. In the second stage, the optimized biotrickling system packed with coal slag was employed to investigate the effects of inlet concentration on NH3 treatment performance. A complete NH3 removal was achieved at concentrations of up to 250 ppm at an empty bed retention time of as low as 8 s, which is shorter than most previously reported biofiltration systems. Results of metabolic product analysis indicated that half of introduced NH3 was oxidized to nitrate and the rest was converted to ammonium ion at low loadings, while nitrite and ammonium ions predominate at high loadings. A bacterial community shift was observed with regard to the loading rates and pH conditions. In addition, there were no common operating problems, such as clogging and compaction, in the operation for more than 1 year

    A wastewater bacterium 'Bacillus' sp. KUJM2 acts as an agent for remediation of potentially toxic elements and promoter of plant ('Lens culinaris') growth

    Get PDF
    This study investigated the role of an allochthonous Gram-positive wastewater bacterium (Bacillus sp. KUJM2) selected through rigorous screening, for the removal of potentially toxic elements (PTEs; As, Cd, Cu, Ni) and promotion of plant growth under PTE-stress conditions. The dried biomass of the bacterial strain removed PTEs (5 mg L−1) from water by 90.17–94.75 and 60.4–81.41%, whereas live cells removed 87.15–91.69 and 57.5–78.8%, respectively, under single-PTE and co-contaminated conditions. When subjected to a single PTE, the bacterial production of indole-3-acetic acid (IAA) reached the maxima with Cu (67.66%) and Ni (64.33%), but Cd showed an inhibitory effect beyond 5 mg L−1 level. The multiple-PTE treatment induced IAA production only up to 5 mg L−1 beyond which inhibition ensued. Enhanced germination rate, germination index and seed production of lentil plant (Lens culinaris) under the bacterial inoculation indicated the plant growth promotion potential of the microbial strain. Lentil plants, as a result of bacterial inoculation, responded with higher shoot length (7.1–27.61%), shoot dry weight (18.22–36.3%) and seed production (19.23–29.17%) under PTE-stress conditions. The PTE uptake in lentil shoots decreased by 67.02–79.85% and 65.94–78.08%, respectively, under single- and multiple-PTE contaminated conditions. Similarly, PTE uptake was reduced in seeds up to 72.82–86.62% and 68.68–85.94%, respectively. The bacteria-mediated inhibition of PTE translocation in lentil plant was confirmed from the translocation factor of the respective PTEs. Thus, the selected bacterium (Bacillus sp. KUJM2) offered considerable potential as a PTE remediating agent, plant growth promoter and regulator of PTE translocation curtailing environmental and human health risks

    Carboxyl-terminal truncated HBx regulates a distinct microRNA transcription program in Hepatocellular carcinoma development

    Get PDF
    Background: The biological pathways and functional properties by which misexpressed microRNAs (miRNAs) contribute to liver carcinogenesis have been intensively investigated. However, little is known about the upstream mechanisms that deregulate miRNA expressions in this process. In hepatocellular carcinoma (HCC), hepatitis B virus (HBV) X protein (HBx), a transcriptional trans-activator, is frequently expressed in truncated form without carboxyl-terminus but its role in miRNA expression and HCC development is unclear. Methods: Human non-tumorigenic hepatocytes were infected with lentivirus-expressing full-length and carboxyl-terminal truncated HBx (Ct-HBx) for cell growth assay and miRNA profiling. Chromatin immunoprecipitation microarray was performed to identify the miRNA promoters directly associated with HBx. Direct transcriptional control was verified by luciferase reporter assay. The differential miRNA expressions were further validated in a cohort of HBV-associated HCC tissues using real-time PCR. Results: Hepatocytes expressing Ct-HBx grew significantly faster than the full-length HBx counterparts. Ct-HBx decreased while full-length HBx increased the expression of a set of miRNAs with growth-suppressive functions. Interestingly, Ct-HBx bound to and inhibited the transcriptional activity of some of these miRNA promoters. Notably, some of the examined repressed-miRNAs (miR-26a, -29c, -146a and -190) were also significantly down-regulated in a subset of HCC tissues with carboxyl-terminal HBx truncation compared to their matching non-tumor tissues, highlighting the clinical relevance of our data. Conclusion: Our results suggest that Ct-HBx directly regulates miRNA transcription and in turn promotes hepatocellular proliferation, thus revealing a viral contribution of miRNA deregulation during hepatocarcinogenesis. © 2011 Yip et al.published_or_final_versio

    Sex-based differences in risk of ischaemic stroke or systemic embolism after BNT162b2 or CoronaVac COVID-19 vaccination in patients with atrial fibrillation: a self-controlled case series and nested case-control study

    Get PDF
    AIMS: Patients with atrial fibrillation (AF) have a higher risk of ischemic stroke or systemic embolism with a greater risk for female patients. This study aims to evaluate the risk of ischemic stroke or systemic embolism and bleeding following COVID-19 vaccination in patients with AF and the sex differences. METHODS AND RESULTS: Self-controlled case series (SCCS) analysis was conducted to evaluate the risk of ischemic stroke or systemic embolism and bleeding following BNT162b2 or CoronaVac in patients with AF, using the territory-wide electronic medical records from the Hospital Authority and vaccination records from the Department of Health in Hong Kong. Patients with a primary diagnosis of ischemic stroke or systemic embolism or bleeding in the inpatient setting between February 23, 2021 and March 31, 2022 were included. A nested case-control analysis was also conducted with each case randomly matched with ten controls according to sex, age, Charlson comorbidity index and date of hospital admission. Conditional Poisson regression was used in the SCCS analysis and conditional logistic regression was used in nested case-control analysis to assess the risks and all analyses were stratified by sex and type of vaccines. Among 51 158 patients with AF, we identified an increased risk of ischemic stroke or systemic embolism after the first dose of BNT162b2 in SCCS analysis during 0-13 days (incidence rate ratio 6.60[95% CI 1.51-28.77]) and 14-27 days (6.53[95% CI 1.31-32.51]), and nested case-control analysis during 0-13 days (adjusted odds ratio 6.21 [95% CI 1.14-33.91]) and 14-27 days (5.52 [95% CI 1.12-27.26]) only in female patients. The increased risk in female patients following the first dose of CoronaVac was only detected during 0-13 days (3.88 [95% CI 1.67-9.03]) in the nested case-control analysis. No increased risk of ischemic stroke or systemic embolism was identified in male patients and no increased risk of bleeding was detected in all patients with AF for both vaccines. An increased risk of ischemic stroke or systemic embolism after COVID-19 was also observed in both females (17.42 [95% CI 5.08-59.73]) and males (6.63 [95% CI 2.02-21.79]). CONCLUSIONS: The risk of ischemic stroke or systemic embolism after COVID-19 vaccination was only increased in female patients with AF. However, as the risk after COVID-19 was even higher, proactive uptake of COVID-19 vaccines is recommended to prevent the potential severe outcomes after infection

    Sex-based differences in risk of ischaemic stroke or systemic embolism after BNT162b2 or CoronaVac COVID-19 vaccination in patients with atrial fibrillation: a self-controlled case series and nested case-control study

    Get PDF
    AimsPatients with atrial fibrillation (AF) have a higher risk of ischaemic stroke or systemic embolism, with a greater risk for female patients. This study aims to evaluate the risk of ischaemic stroke or systemic embolism and bleeding following COVID-19 vaccination in patients with AF and the sex differences.Methods and resultsSelf-controlled case series (SCCS) analysis was conducted to evaluate the risk of ischaemic stroke or systemic embolism and bleeding following BNT162b2 or CoronaVac in patients with AF, using the territory-wide electronic medical records from the Hospital Authority and vaccination records from the Department of Health in Hong Kong. Patients with a primary diagnosis of ischaemic stroke, systemic embolism, or bleeding in the inpatient setting between 23 February 2021 and 31 March 2022 were included. A nested case-control analysis was also conducted with each case randomly matched with 10 controls according to sex, age, Charlson comorbidity index, and date of hospital admission. Conditional Poisson regression was used in the SCCS analysis, and conditional logistic regression was used in the nested case-control analysis to assess the risks, and all analyses were stratified by sex and type of vaccines. Among 51 158 patients with AF, we identified an increased risk of ischaemic stroke or systemic embolism after the first dose of BNT162b2 in SCCS analysis during 0-13 days [incidence rate ratio 6.60, 95% confidence interval (CI) 1.51-28.77] and 14-27 days (6.53, 95% CI 1.31-32.51), and nested case-control analysis during 0-13 days (adjusted odds ratio 6.21, 95% CI 1.14-33.91) and 14-27 days (5.52, 95% CI 1.12-27.26) only in female patients. The increased risk in female patients following the first dose of CoronaVac was only detected during 0-13 days (3.88, 95% CI 1.67-9.03) in the nested case-control analysis. No increased risk of ischaemic stroke or systemic embolism was identified in male patients, and no increased risk of bleeding was detected in all patients with AF for both vaccines. An increased risk of ischaemic stroke or systemic embolism after COVID-19 was also observed in both females (17.42, 95% CI 5.08-59.73) and males (6.63, 95% CI 2.02-21.79).ConclusionsThe risk of ischaemic stroke or systemic embolism after COVID-19 vaccination was only increased in female patients with AF. However, as the risk after COVID-19 was even higher, proactive uptake of COVID-19 vaccines is recommended to prevent the potential severe outcomes after infection

    Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review

    Get PDF
    The search for effective materials for environmental cleanup is a scientific and technological issue of paramount importance. Among various materials, carbon nanotubes (CNTs) possess unique physicochemical, electrical, and mechanical properties that make them suitable for potential applications as environmental adsorbents, sensors, membranes, and catalysts. Depending on the intended application and the chemical nature of the target contaminants, CNTs can be designed through specific functionalization or modification processes. Designer CNTs can remarkably enhance contaminant removal efficiency and facilitate nanomaterial recovery and regeneration. An increasing number of CNT-based materials have been used to treat diverse organic, inorganic, and biological contaminants. These success stories demonstrate their strong potential in practical applications, including wastewater purification and desalination. However, CNT-based technologies have not been broadly accepted for commercial use due to their prohibitive cost and the complex interactions of CNTs with other abiotic and biotic environmental components. This paper presents a critical review of the existing literature on the interaction of various contaminants with CNTs in water and soil environments. The preparation methods of various designer CNTs (surface functionalized and/or modified) and the functional relationships between their physicochemical characteristics and environmental uses are discussed. This review will also help to identify the research gaps that must be addressed for enhancing the commercial acceptance of CNTs in the environmental remediation industry

    Pharmaceuticals and personal care products' (PPCPs) impact on enriched nitrifying cultures

    No full text
    The impact of pharmaceutical and personal care products (PPCPs) on the performance of biological wastewater treatment plants (WWTPs) has been widely studied using whole-community approaches. These contaminants affect the capacity of microbial communities to transform nutrients; however, most have neither honed their examination on the nitrifying communities directly nor considered the impact on individual populations. In this study, six PPCPs commonly found in WWTPs, including a stimulant (caffeine), an antimicrobial agent (triclosan), an insect repellent ingredient (N,N-diethyl-m-toluamide (DEET)) and antibiotics (ampicillin, colistin and ofloxacin), were selected to assess their short-term toxic effect on enriched nitrifying cultures: Nitrosomonas sp. and Nitrobacter sp. The results showed that triclosan exhibited the greatest inhibition on nitrification with EC 50 of 89.1 μg L −1. From the selected antibiotics, colistin significantly affected the overall nitrification with the lowest EC 50 of 1 mg L −1, and a more pronounced inhibitory effect on ammonia-oxidizing bacteria (AOB) compared to nitrite-oxidizing bacteria (NOB). The EC 50 of ampicillin and ofloxacin was 23.7 and 12.7 mg L −1, respectively. Additionally, experimental data suggested that nitrifying bacteria were insensitive to the presence of caffeine. In the case of DEET, moderate inhibition of nitrification (<40%) was observed at 10 mg L −1. These findings contribute to the understanding of the response of nitrifying communities in presence of PPCPs, which play an essential role in biological nitrification in WWTPs. Knowing specific community responses helps develop mitigation measures to improve system resilience

    Biorefining waste sludge from water and sewage treatment plants into eco-construction material

    No full text
    © 2019 Cheng, Yi, Yu, Wong, Wang, Kwon and Tsang. This study aims to investigate the feasibility of using different waste sludge and coal combustion residuals in eco-concrete block production. The compressive strength of the eco-concrete blocks produced by waterworks sludge, bottom and fly ashes were 36 MPa, which comply with the standard specifications for paving blocks in Hong Kong. The optimal mixing proportion (by weight) of different materials in the blocks, such as aggregates, cementitious materials, water, and fly ash was 1.1:1.0:0.5:0.22, respectively. The environmental and toxicological impacts of the final products were then evaluated according to the toxicity characteristic leaching procedure (TCLP). While several heavy metals (i.e., Hg, Cu, and Pb) have been identified in the specimens, the levels of these contaminants complied with Standards (US 40 CFR 268.48). Waste materials generated from water and sewage treatment processes and power plants are feasible to be used as ingredients for paving concrete block production. These products are environmentally acceptable and mechanically suitable for resource recovery of waste materials
    corecore