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Abstract

Background: The biological pathways and functional properties by which misexpressed microRNAs (miRNAs) contribute to
liver carcinogenesis have been intensively investigated. However, little is known about the upstream mechanisms that
deregulate miRNA expressions in this process. In hepatocellular carcinoma (HCC), hepatitis B virus (HBV) X protein (HBx), a
transcriptional trans-activator, is frequently expressed in truncated form without carboxyl-terminus but its role in miRNA
expression and HCC development is unclear.

Methods: Human non-tumorigenic hepatocytes were infected with lentivirus-expressing full-length and carboxyl-terminal
truncated HBx (Ct-HBx) for cell growth assay and miRNA profiling. Chromatin immunoprecipitation microarray was
performed to identify the miRNA promoters directly associated with HBx. Direct transcriptional control was verified by
luciferase reporter assay. The differential miRNA expressions were further validated in a cohort of HBV-associated HCC
tissues using real-time PCR.

Results: Hepatocytes expressing Ct-HBx grew significantly faster than the full-length HBx counterparts. Ct-HBx decreased
while full-length HBx increased the expression of a set of miRNAs with growth-suppressive functions. Interestingly, Ct-HBx
bound to and inhibited the transcriptional activity of some of these miRNA promoters. Notably, some of the examined
repressed-miRNAs (miR-26a, -29c, -146a and -190) were also significantly down-regulated in a subset of HCC tissues with
carboxyl-terminal HBx truncation compared to their matching non-tumor tissues, highlighting the clinical relevance of our
data.

Conclusion: Our results suggest that Ct-HBx directly regulates miRNA transcription and in turn promotes hepatocellular
proliferation, thus revealing a viral contribution of miRNA deregulation during hepatocarcinogenesis.
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Introduction

The hepatitis B virus (HBV) X protein (HBx), a 154-amino acid

transcriptional trans-activator, is believed to play an oncogenic role

in the development of hepatocellular carcinoma (HCC) [1–3].

Despite having no DNA binding domain, HBx can deregulate

cellular gene expression by altering various signal transduction

pathways [4–6], associating with transcription factors or compo-

nents of basal transcription machinery [7,8], and inducing

epigenetic modifications [9]. HBx is frequently integrated into

the host genome in truncated form without its carboxyl-terminus

and over-expressed in HBV-associated HCC tissues [10–13].

These carboxyl-terminal truncated HBx (Ct-HBx) variants have

been shown to abrogate the growth-suppressive and apoptotic

effects of full-length HBx [10,11,14]. Moreover, Ct-HBx is able to

enhance cellular proliferation in vitro [11,14] and tumorigenicity in

vivo [13,15]. However, the underlying mechanisms remain to be

fully defined.
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Similar to HBV, human papillomavirus (HPV), Epstein-Barr

virus (EBV) and human T-lymphotropic virus Type I (HTLV-1)

express different oncoproteins which have been strongly associated

with the development of cancers [16–18]. These oncoproteins not

only control the transcription of protein-coding genes, but also

microRNAs (miRNAs), which belongs to a family of small non-

coding RNAs (,18–22 nt) that regulates gene expression by either

directing mRNA degradation or repressing post-transcriptional

translation. It has become apparent that specific miRNAs

contribute to neoplastic transformation and tumorigenesis through

influencing the translation of multiple key cellular genes and

thereof crucial biological processes. In this connection, HPV

oncoprotein E6 has been shown to suppress miR-34a transcription

[16] while LMP1 and Tax encoded by EBV and HTLV-1,

respectively, have been demonstrated to up-regulate miR-146a

that was found to be differentially expressed in cancers [17,18].

Wang et al. have recently demonstrated the ability of HBx to

modulate cellular miRNA expression in HCC cells [19]. However,

the systemic effect of HBx in miRNA regulation in human

hepatocytes remains unclear. More importantly, whether miRNAs

could be transcriptionally controlled by Ct-HBx, the more

preferentially-expressed form of HBx in HCC tissues has not

been explored.

In this study, we tested the hypothesis that the frequent

carboxyl-terminal truncated form of HBx contributes to liver

carcinogenesis through deregulating cellular miRNAs. We directly

compared the miRNA profiles in human hepatocytes expressing

full-length HBx and Ct-HBx. We found that full-length HBx

significantly decreased liver cell viability and increased the

expression of a set of miRNAs with growth-suppressive functions.

In contrast, Ct-HBx stimulated cellular proliferation which was

concordant with the repression of the same subset of growth-

suppressive miRNAs. Moreover, Ct-HBx was shown to bind to

their promoter regions leading to transcriptional repression.

Notably, some of these miRNAs were significantly down-regulated

in a subset of HCC tissues with carboxyl-terminal HBx truncation

compared to their matching non-tumor tissues, highlighting the

clinical relevance of our data and the importance of Ct-HBx

during hepatocarcinogenesis.

Materials and Methods

Patient samples and cell lines
Human tissue samples were collected with written consent of the

patients and prior approval from Joint CUHK-NTEC Clinical

Research Ethics Committee. Sixteen pairs of HCC and the

matching non-tumor tissues were collected from HBV-associated

patients between 2004 and 2006 at the Prince of Wales Hospital in

Hong Kong (Table 1). Non-tumorigenic human liver cell lines:

MIHA, immortalized from a HBV-negative patient with the SV40

T antigen [20] and LO2, immortalized by human telomerase

reverse transcriptase over-expression [21] as well as human

embryonic kidney (HEK) 293T cells and PLC5 HCC cells were

cultured in Dulbecco’s modified Eagle’s medium (Invitrogen,

Carlsbad, USA) supplemented with 10% Fetal Bovine Serum

(Thermo Scientific HyClone, Logan, USA) and maintained at a

37uC humidified incubator with 5% CO2.

Cloning and detection of HBx gene by PCR
Viral DNA samples extracted from the sera of HCC patients

CH230 and BC265 were used for the amplification and cloning of

HBx gene as previously described [22]. Full-length HBx was also

cloned using a pBR-HBadr4 plasmid template originated from

HBV subtype adr [23]. Deletion of HBx gene in HCC and the

matching non-tumor tissues was detected by PCR in a 25-ml

reaction as previously described [13]. The PCR products were

Table 1. Characteristics of the HBV-associated HCC patients and C-terminal truncation status of the corresponding HBx gene in
tumor.

Case no. Sex Age Cirrhosis HBx truncation *F1/R1 F1/R2 F1/R3 F1/R4 F1/R5

NT T NT T NT T NT T NT T

508 F 46 Y Y + + + + + + + + + 2

513 F 39 Y N + + + + + + + + + +

515 M 60 Y Y + + + + + + + + + 2

519 M 52 Y Y + + + + + + + + + 2

522 F 42 Y N + + + + + + + + + +

527 M 59 Y Y + + + + + + + + + 2

531 M 68 N Y + + + + + + + + + 2

532 M 71 Y N + + + + + + + + + +

547 M 59 N N + + + + + + + + + +

550 M 67 N N + + + + + + + + + +

551 M 65 Y Y + + + + + + + + + 2

552 M 58 Y Y + + + + + + + 2 + 2

554 F 62 Y N + + + + + + + + + +

557 M 64 Y N + + + + + + + + + +

558 F 55 Y N + + + + + + + + + +

559 M 53 N Y + + + + + 2 + 2 + 2

*Primer pairs used for HBx amplification (see Figure 5A).
Abbreviations and symbols: NT, matched non-tumor tissue; T, tumor tissue; +, successful amplification of HBx fragment; 2, unsuccessful amplification of HBx fragment.
doi:10.1371/journal.pone.0022888.t001
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analyzed by electrophoresis on a 1.5% agarose gel and visualized

by GelDoc XR system (Bio-Rad Laboratories, Inc., Hercules, CA,

USA).

Generation of lentiviruses
HBx fragments from patient CH230 were amplified by PCR

using a forward primer carrying a Kozak and flag-tag sequence

and reverse primers with an artificial stop codon at different

deletion sites. PCR products were cloned into a pCR2.1-TOPO

vector (Invitrogen, Carlsbad, USA) and then sub-cloned to the

EcoRI and SalI restriction sites of a lentivirus vector, pRRL-cPPT-

CMV-X-IRES-EGFP-PRE-SIN, to generate Lenti-X, Lenti-

XD14 and Lenti-XD35 (expressing full-length, 14- and 35-amino

acid carboxyl-terminal truncation, respectively, see Figure 1A). We

chose to investigate HBxD14 and HBxD35 because these Ct-HBx

have been shown to abrogate the growth-suppressive effects

induced by full-length HBx, effectively promote cell transforma-

tion and enhance the proliferative activity of neoplastic cells

[11,14]. More importantly, they have been identified as natural

deletion mutants in HCC tissues [11,14]. Packaging of lentivirus

was performed by transient transfection of HEK 293T cells with

the transfer vector and packaging vectors, pMDL/pRRE, pRSV-

REV and pCMV-VSVG as described previously [24]. Infection

was carried out on 26104 of MIHA hepatocytes in a 24-well plate

with 8 mg/ml polybrene (Aldrich Chemical Company Inc.,

Milwaukee, USA). The transduction efficiencies of the 3 constructs

and EGFP vector control were 70% to 90% by fluorescence

microscope at day 3 post-infection (see Figure 2A).

Western blot analysis
Fifty micrograms of protein were resolved on a 15% SDS-

PAGE. HBx antibody [X36C] (ab2741) (Abcam plc, Cambridge,

UK) (1:2000) and b-actin antibody (Santa Cruz Biotechnology,

Inc., Delaware, USA) (1:5000) were used for western blot analysis.

MiRNA extraction and expression microarray
Total RNA containing small RNA was extracted using

miRNeasy Mini Kit (Qiagen, Valencia, USA) according to the

manufacturer’s protocol. One hundred nanograms of total RNA

labeled with Cy-3 fluorescent dyes were used for miRNA profiling

Figure 1. Selection of HBx gene from HBV-associated HCC patients. (A) Amino acid sequences of HBx gene derived from 2 HBV-associated
HCC patients (CH230 and BC265). The sequence of HBV subtype adr is also shown at the top. Identical amino acid residues are represented by dots.
The locations of truncation generated by PCR are shown in arrows. (B) Effect of different full-length HBx sequences on growth as assessed by the
colony formation assay. Cells were transfected with plasmids expressing HBx derived from BC265, CH230, adr or vector alone. Results are derived
from triplicate transfections (6 SD). *, p,0.05; **, p,0.01.
doi:10.1371/journal.pone.0022888.g001
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using Agilent Human miRNA Microarray Kit (V2) (Agilent

Technologies, Inc., Santa Clara, USA) that contains probes for

723 human and 76 viral miRNAs according to the manufacturer’s

protocol. The slide was scanned using an Agilent Microarray

Scanner, and data was extracted using the Agilent Feature

Extraction Software. GeneSpring software (Agilent Technologies,

Figure 2. Expression and functions of full-length HBx and Ct-HBx in human hepatocytes. (A) Phase contrast and fluorescent microscopic
examination of MIHA hepatocytes infected by lentivirus containing different forms of HBx or EGFP alone at day 3 post-infection. (B) Western blot
analysis of HBx expression in lentivirus-infected MIHA hepatocytes. b-actin was used as loading control. 1) Parental MIHA, 2) EGFP only, 3) Full-length
HBx, 4) HBxD14 and 5) HBxD35. (C) Effect of different forms of HBx on cell proliferation. Results are derived from 6 replicates of 2 independent
experiments (6 SD). ***, p,0.005; ‘, p = 0.06. (D) Effect of different forms of HBx on apoptosis as assessed by flow cytometry. Cells were stained with
7-AAD and Annexin V to determine cell viability and apoptosis, respectively.
doi:10.1371/journal.pone.0022888.g002
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Inc., Santa Clara, USA) was used to analyze the microarray data

after filtering the non-expressed probes and normalization by the

75% percentile shift method.

Quantitative real-time PCR
The level of mature miRNAs was quantified by TaqMan

MicroRNA Assays (Applied Biosystems, Foster City, USA). The

quantitative PCR was carried out in a 10-ml reaction using 384-

well plate by Applied Biosystems 7900HT Fast Real-Time PCR

System. Data was normalized by RNU6B or 18S rRNA and the

fold change was determined by the comparative cycle of threshold

(Ct) method. All reactions were carried out in triplicate and blank

controls were included in every reaction.

Chromatin immunoprecipitation microarray (ChIP-chip)
and ChIP-PCR

The ChIP assay was performed by using Transcription Factor

Chromatin Immunoprecipitation Kit (Red ChIP Kit) (Diage-

node, Liège, Belgium) according to the manufacturer’s protocol.

In brief, HBxD35-, full-length HBx- and EGFP-expressing

MIHA hepatocytes were crosslinked in 1% formaldehyde for

5 minutes at 37uC and collected. The cells were sonicated to

shear the cross-linked chromatin into an average DNA fragment

size of 200–600 bp. Five micrograms of antibody against HBx

antibody (X36C) were used for immunoprecipitation. After

overnight incubation, DNA-protein-antibody complex was

eluted. The crosslinks were reversed by heating the samples at

65uC for 4 hours. DNA was extracted by the phenol:chlor-

oform:isoamyl alcohol, ethanol-precipitation and resuspended in

10 ml of water. DNA was amplified by GenomePlexH Complete

Whole Genome Amplification (WGA) Kit (Sigma, St. Louis,

MO, USA) according to the manufacturer’s protocol. In brief,

10 ml of DNA was subjected into library preparation and the first

round of amplification. After purification by QIAquick PCR

Purification Kit (Qiagen, Valencia, USA), 100 ng of DNA was

subjected into the second round of amplification. Incorporation

of aminoallyl-dUTP into 2 mg ChIP-DNA was done by using a

random primed Klenow polymerase reaction (Invitrogen,

Carlsbad, USA) at 37uC for 3 hours. Cy5 and Cy3 fluorescent

dyes (GE Healthcare, Little Chalfont, UK) were coupled to

MIHA-HBxD35 and MIHA-EGFP ChIP-DNA, respectively.

The labeled samples were hybridized with Agilent Human

Promoter ChIP-on-chip Microarray set at 65uC for 40 hours.

Replicate dye-swap experiments were performed. After washing

the arrays according to the manufacturer’s protocol, arrays were

scanned on GenePix 4000B scanner and data were extracted by

using Agilent Feature Extraction Software (Agilent Technolo-

gies, Inc., Santa Clara, USA). For validation, quantitative real-

time ChIP-PCR was performed by SYBR Green (Applied

Biosystems, Foster City, USA) using the 7500 Real-time PCR

System (Applied Biosystems, Foster City, USA) as previously

described [25].

Luciferase reporter assay
The Renilla luciferase reporter control plasmid, pRL-CMV and

the pGL3 promoter luciferase reporter plasmid were purchased

from Promega Corp (Madison, WI, USA). The reporter plasmids

were generated by cloning the MluI-BglII DNA fragments

amplified with specific primers targeting the upstream promoter

regions of miR-26a (forward primer: 59-ATATACGCGTGGA-

TGCTTCATCATCCTCC-39; reverse primer: 59-ATATAGA-

TCTCGGGAGAGAATTTTGACC-39) and miR-29c (forward

primer: 59-ATATACGCGTCTAGAGGCCTGAAAGGAAG-39;

reverse primer: 59-ATATAGATCTGACTGATGGTGTCGAT-

GTG-39). To analyze the miRNA promoter activity, 293FT cells

(16105) grown in 24-well plates were co-transfected with 800 ng of

expression vector (full-length HBx, HBxD35 or control plasmid)

and 50 ng of reporter plasmid using Genejuice transfection reagent

(Novagen, Madison, WI, USA). At 48 hours after transfection, cells

were harvested and assayed using Dual Luciferase Reporter Kit

(Promega, Madison, WI, USA) as previously described [26].

Transfection of miRNA mimic
Hsa-miR-26a and negative control miRNA mimics were

purchased from Ambion (Austin, TX, USA). Fifty nanomolar of

miRNA mimics were transfected into PLC5 cells by using

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s

protocol. Protein and RNA were extracted 48 hours after

transfection. Ectopic miRNA expression was confirmed by

quantitative PCR using miScript Reverse Transcription kit and

miScript SYBR Green PCR Kit (Qiagen, Hilden, Germany) as

previously described [26]. The in-house designed miRNA specific

primer sequences for miR-26a and snU6 are 59-TTCAAG-

TAATCCAGGATAGGCT-39 and 59-ACGCAAATTCGTGAA-

GCGTT-39 respectively.

Colony formation assay
Full-length HBx fragments from HCC patients BC265 and

CH230 as well as HBV subtype adr shown to induce HCC in

transgenic model [27] were cloned into pcDNATM3.1/V5-His

TOPO (Invitrogen, Carlsbad, USA). Two micrograms of plasmid

DNA were transfected to 46105 cells on a 6-well plate using

FuGENE6 Transfection Reagent (Roche Diagnostic Corp., India-

napolis, USA). Transfected cells were selected by 1000 mg/ml

Geneticin G418 (Invitrogen, Carlsbad, USA). Fresh medium with

G418 was replaced twice a week for 18 days. The colonies were

visualized by crystal violet in methanol (0.5% w/v).

Cell proliferation assay
Cell viability was assessed by a colorimetric method using

CellTiter 96H AQueous One Solution Cell Proliferation Assay

(Promega Corp., Madison, USA) for 5 consecutive days. Two

thousand cells were seeded to 96-well plate in 6 replicates. The

plate was light-protected and assayed at 37uC for an hour. The

absorbance of the colorimetric products formed was measured at

490 nm by a spectrophotometer.

Apoptosis assay
Cell apoptosis was assessed by flow cytometry using a PE

Annexin V Apoptosis Detection Kit I (BD Pharmingen, San

Diego, USA) and analyzed by BD FACSAriaTM Flow Cytometer

and Modfit LT 3.0 (Verity Software House, Topsham, USA).

Statistical Analysis
Statistical analysis was performed by GraphPad Prism (Graph-

Pad Software Inc., San Diego, USA). The data was analysed by

Student’s t-test or Wilcoxon signed rank test. P value,0.05 was

considered as statistically significant.

Results

Selection of HBx gene from HBV-associated HCC patients
To investigate whether full-length HBx and Ct-HBx regulate

miRNA expression in human hepatocytes, we first selected HBx

gene from HBV-associated HCC patients. We cloned the full-

length HBx sequences from serum samples of 2 HCC patients and

Carboxyl-Truncated HBx Regulates MicroRNAs
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a reference control of HBV subtype adr [27]. Sequencing analysis

verified that both the adr subtype and the patient CH230

sequences belonged to genotype C HBV while those of patient

BC265 was genotype B (Figure 1A) and colony formation assay

was then performed. As shown in Figure 1B, expression of all full-

length HBx sequences in MIHA cells resulted in fewer number of

colonies compared to cells transfected with vector only and the

difference was statistical significant (p,0.01). This finding was

consistent with previous study demonstrating the growth-inhibito-

ry function of full-length HBx [11]. Among the full-length HBx

sequences, we found that their colony formation abilities were

different as MIHA expressing HBx derived from patient CH230

and adr formed significantly more colonies than that of patient

BC265 (p,0.05, Figure 1B). These data were in agreement with

our previous findings that patients infected by genotype C HBV

had a higher incidence of HCC as compared to those infected by

genotype B HBV [28,29]. Thus, we selected the HBx gene derived

from patient CH230 for the subsequent experiments.

Effects of full-length HBx and Ct-HBx on cell growth and
apoptosis

We then cloned the full-length and Ct-HBx genes into lentiviral

vector and transduced the constructs into MIHA hepatocytes with

high efficiency (Figure 2A). Over-expression of HBx genes was

further confirmed by Western blot analysis (Figure 2B). Consistent

with the finding of colony formation assay, MIHA hepatocytes

expressing full-length HBx grew slower than vector control cells

(p,0.005 and = 0.06 on day 4 and 5, respectively, Figure 2C). On

the other hand, the growth rates of MIHA expressing HBxD14

and EGFP vector were similar (Figure 2C), indicating that deletion

of 14-amino acid from C-terminus lost the growth-suppressive

effect of full-length HBx. Notably, the growth of MIHA expressing

HBxD35 was consistently faster than the full-length counterpart

(p,0.005 on both day 4 and 5, Figure 2C). To rule out possible

cell line-specific effects, we determined the growth of an

independent human hepatocyte cell line, LO2 expressing full-

length HBx and HBxD35, and observed similar divergent effect on

cell growth (Figure S1A).

Annexin V apoptosis assay was performed to examine the

apoptotic effect of full-length HBx, HBxD14 and HBxD35. The

early apoptotic and necrotic/late apoptotic cells were depicted in

Quadrant 4 and 1/2, respectively, in Figure 2D. While the effect

of different HBx forms on apoptosis appeared minimal in our

system (Quadrant 4: HBx vs. control: 0.6–0.9% vs. 1.3%), all HBx

forms decreased MIHA cell death (full-length HBx, HBxD14 and

HBxD35: 1.8, 3.2 and 3%, respectively) compared to the vector

control (10.3%). Collectively, our data confirmed with others that

Ct-HBx abrogated the growth-suppressive function of full-length

HBx which showed diverse effect on cell cycle distribution [10,14].

Deregulation of miRNAs by full-length HBx and Ct-HBx
We then performed miRNA microarray profiling to identify the

potential miRNAs deregulated by full-length HBx and HBxD35 in

MIHA hepatocytes. We hypothesized that full-length HBx and

HBxD35 regulate distinct miRNA profiles based on their divergent

effects on MIHA cell growth. Fifty-nine miRNAs were differen-

tially expressed by full-length HBx and/or HBxD35 for at least

1.5-fold when compared to the vector control cells (Figure 3A).

Full-length HBx activated and repressed a similar number of

miRNAs in MIHA hepatocytes (Figure 3A). In contrast, the

majority of the differential miRNAs was down-regulated by

HBxD35 (Figure 3A). Only a few miRNAs were concordantly

regulated by both HBx forms e.g. miR-23a up-regulation and

miR-19a/b down-regulation (Figure 3A). Indeed, most of the

miRNAs were divergently regulated by the two HBx forms. More

than 80% (28/33) of the miRNAs up-regulated by full-length HBx

were either down-regulated or unaffected by HBxD35 e.g. miR-

146a, -193b, -210 and -26a/b (Figure 3A). On the other hand,

two-third (24/36) of the miRNAs down-regulated by HBxD35

were either up-regulated or unaffected by full-length HBx e.g.

miR-29b/c, -30d, -365 and -574-3p (Figure 3A). These data

suggested that full-length HBx and Ct-HBx distinctively regulated

the expression of a subset of miRNAs in human hepatocytes.

To validate the microarray findings, we performed TaqMan-

based real-time PCR on 10 miRNAs showing common or

divergent expression patterns between full-length HBx and

HBxD35. Nine out of 10 expression patterns revealed by

microarray could be confirmed by PCR analysis (Figure 3B). For

example, miR-23a and -125a up-regulation as well as miR-19a/b

down-regulation by both HBx forms were verified (Figure 3B).

More importantly, the divergent regulation by full-length HBx and

HBxD35 on miR-146a, -193b, -29c and -365 could be confirmed

(Figure 3B). In addition, miR-190 not detectable by microarray

was shown to be differentially regulated by full-length HBx and

HBxD35 (Figure 3B), presumably due to superior sensitivity of

real-time PCR. Altogether the PCR analysis confirmed the validity

of array findings.

Overall, ten miRNAs were shown to be divergently regulated by

the 2 HBx forms i.e. up-regulated by full-length HBx but down-

regulated by HBxD35 (Table 2). Remarkably, eight out of the 10

miRNAs have been reported to exhibit anti-proliferative and/or

pro-apoptotic functions in various cancer types including HCC

(Table 2). We further confirmed the growth-inhibitory effect of

miR-146a and -29 in MIHA and HepG2 liver cancer cells by cell

proliferation assays (data not shown). Collectively, our findings

suggested that the distinct repression of growth-inhibitory miRNAs

by Ct-HBx may at least partially explain its growth-stimulatory

effects on hepatocytes.

Ct-HBx physically associates with miRNA promoters
We next investigated how Ct-HBx might regulate miRNA

transcription. ChIP-chip analysis was performed to determine

whether the promoter regions of the differentially-expressed

miRNAs were bound by HBxD35 in MIHA hepatocytes.

Interestingly, strong enrichment of HBx was detected in 6

HBxD35-down-regulated miRNAs (miR-26a, -29c, -30d, -190, -

210 and -574) proximal to their transcription start sites (61.5 kilo-

base) in HBxD35-expressing MIHA hepatocytes compared with

vector control (Figure 4A and data not shown). To validate the

microarray findings, we performed real-time ChIP-PCR using

primers specific to the bound promoter regions and observed

significant enrichment by HBx antibody in HBxD35-expressing

MIHA hepatocytes compared to vector control in all of the

miRNA promoters (p = 0.0016 to 5.18E-05, Figure 4B). In

addition to the repressed promoters, enrichment of HBx was also

detected in the activated miRNA promoters. For instance, HBx

binding was shown in the 4–4.5 kilo-base upstream promoter

region of the miR-23a/27a cluster (Figure 4B) which was

significantly up-regulated by HBxD35 (Figure 3). Overall, these

data suggested that Ct-HBx could bind to the miRNA promoter

regions for direct transcriptional regulation.

To compare the miRNA promoter binding patterns between

Ct-HBx and full-length HBx, we also performed ChIP-chip in full-

length HBx-expressing MIHA hepatocytes. In some of the direct

HBxD35-repressed miRNAs, we observed different binding

locations e.g. miR-29c promoter or no obvious binding e.g.

miR-30d promoter by full-length HBx compared to HBxD35

(Figure S2). On the other hand, in the few miRNAs that were
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concordantly regulated by both full-length HBx and HBxD35 e.g.

miR-23a and -27a, similar promoter region (around 4-kb

upstream of TSS) was occupied by both forms of HBx (Figure

S2). Real-time ChIP-PCR further validated the miRNA binding

patterns in full-length HBx- and HBxD35-expressing MIHA

hepatocytes (Figure S2). Taken together, these data demonstrated

that full-length HBx also bound to some miRNA promoters, in

either similar or different chromatin regions occupied by Ct-HBx.

Ct-HBx directly represses miRNA transcription
To establish a direct link between Ct-HBx and transcriptional

control of miRNA expression, we cloned the promoter regions of 2

repressed miRNAs (miR-26a and miR-29c) that contained the Ct-

HBx binding sites (Figure 4A) into luciferase reporter and then co-

transfected with HBxD35, full-length HBx or empty vector for

promoter activity assays. As shown in Figure 4C, we found that

both miR-26a and miR-29c promoter activities were significantly

reduced by HBxD35 when compared to empty vector control

(p,0.05 and 0.005, respectively). In contrast, there was no

significant difference in the promoter activities between the full-

length HBx-transfected and control cells (Figure 4C). Altogether,

these data suggested that the truncated HBx, rather than the full-

length counterpart, directly repressed transcription via physical

binding resulting in decreased expression of these miRNAs.

Expression of miRNAs in HCC tissues with preferential C-
terminal HBx truncation

To investigate the clinical relevance of specific miRNA down-

regulation by Ct-HBx, we examined the miRNAs expression in a

cohort of 16 HBV-associated HCC and their matching non-tumor

tissues. We first determined the HBx form (full-length or

truncation) in the tissues by PCR analysis using 5 pairs of primers

encompassing the entire and different lengths of the HBx gene

(Figure 5A). An example of carboxyl-terminal deletion of HBx

gene in a patient’s tumor but not in the non-tumor tissue was

shown (Figure 5B). Overall, full-length HBx could be amplified

from all of the non-tumor tissues (16/16) but only in half of the

HCC tissues (8/16) (Table 1). Thus, Ct-HBx was preferentially

present in HCC tissues (p = 0.0024). Since both full-length and

truncated HBx can be simultaneously present in the same HCC

tissues [44], this PCR analysis might underestimate the number of

tissue specimens harboring truncated HBx. Nevertheless, the high

prevalence of Ct-HBx exclusively in HCC tissues confirmed its

importance in human hepatocarcinogenesis.

We then examined the expression levels of some of the HBxD35-

repressed miRNAs (miR-26a, miR-29c, -146a and -190) in the

clinical specimens using TaqMan-based real-time PCR. Of the 8

HCCs exhibiting HBx truncation (Table 1), seven cases showed

down-regulation of at least one of the examined miRNAs

(Figure 5C). The levels of the examined miRNAs in HCC tissues

were significantly lower than that of the matching non-tumor tissues

(p = 0.001 to 0.046, Figure 5C). Overall, the 4 miRNAs were down-

regulated by more than 2-fold in 43.8–62.5% of HCC tissues, an

observation concurring with the notion that these miRNAs are at

least partially repressed by Ct-HBx in HCCs.

Discussion

Recent findings have shown that miRNAs are often deregulated

in HCC and significantly correlated with its clinicopathological

features, such as cirrhosis, metastasis, recurrence, and prognosis

[45–47]. Functional studies further illustrate that miRNAs play

important roles during hepatocarcinogenesis by directly influenc-

ing cell proliferation, apoptosis and metastasis of HCC cells

[47,48]. We and others have also delineated the miRNAs

associated with HCC cells that were derived from chronic carriers

of HBV and HCV, suggesting that miRNAs could be important

mediators of HBV and HCV infection leading disease progression

to HCC [49,50]. However, the upstream mechanisms that

contribute to the miRNA misexpression in HCC remain elusive.

Here we provide evidence for miRNA deregulation in HCC

through the HBV-encoded oncoprotein HBx. Using lentiviral-

mediated expression system and integrative miRNA analysis, we

found that full-length HBx and Ct-HBx distinctively regulated

miRNA transcription in human hepatocytes. While full-length

HBx activated and repressed similar numbers of miRNAs, its

truncated form preferentially down-regulated miRNAs. Notably,

at least 10 miRNAs were divergently regulated i.e. up-regulated by

full-length HBx but down-regulated by the truncated counterpart.

Our initial expression analysis in clinical samples implies that Ct-

HBx at least partially contributes to the down-regulation of these

miRNAs in human HCC, although further studies with larger

sample size will be required to verify this notion.

Wang et al. were first to systematically demonstrate the direct

role of full-length HBx in deregulating miRNAs and explore the

downstream mechanisms leading to hepatocarcinogenesis [19]. In

this study, seven and 11 miRNAs were found to be significantly

up-regulated and down-regulated, respectively, in HBx-express-

ing HepG2 liver cancer cells compared to the control cells [19].

Albeit using different culture and expression systems, our findings

also indicated that the same subset of miRNAs (miR-125a, -193b

Figure 3. Differential miRNA expression by full-length HBx and Ct-HBx in human hepatocytes. (A) Heatmap of the differentially-
expressed miRNAs by full-length HBx- and HBxD35-expressing MIHA hepatocytes compared to EGFP-expressing control cells. MiRNAs with at least
1.5-fold difference were identified using an expression microarray that contains probes of 723 human miRNAs. (B) Confirmation of the differentially-
expressed miRNAs by real-time PCR analysis. Six and 5 miRNAs with common (left) and divergent (right) expression patterns, respectively, between
full-length HBx and HBxD35 are shown. The miRNA expression was normalized with RNU6B or 18S rRNA and compared to EGFP-expressing control
cells. Data are presented in Log2 scale.
doi:10.1371/journal.pone.0022888.g003

Table 2. A list of miRNAs divergently regulated by full-length
and carboxyl-terminal truncated HBx.

Fold Change

MicroRNA HBx/Vector HBxD35/Vector *Reference

Hsa-miR-26a 1.63 0.67 [30,31]

Hsa-miR-26b 1.55 0.62 [32,33]

Hsa-miR-29c 1.95 0.53 [34,35]

Hsa-miR-30d 1.86 0.64 [36,37]

Hsa-miR-146a 2.24 0.35 [17,38]

Hsa-miR-190 2.91 0.31 -

Hsa-miR-193b 5.48 0.69 [39,40]

Hsa-miR-210 1.98 0.25 [41,42]

Hsa-miR-365 4.38 0.64 [43]

Hsa-miR-574-3p 1.63 0.56 -

*The references depicting the growth-inhibitory effects of miRNAs.
doi:10.1371/journal.pone.0022888.t002
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and -99b) were up-regulated by full-length HBx in human

hepatocytes and thus supported the authenticity of data.

Furthermore, we found that a substantial number of full-length

HBx-induced miRNAs have been reported to possess growth-

inhibitory functions (Table 2). For example, miR-193b, frequent-

ly down-regulated in HCC [40], melanoma [51], breast [52] and

prostate cancers [53], was shown to promote apoptosis and

inhibit growth of cancer cells [39,40,51–53]. Concurred with the

apoptosis-enhancing property of HBx [19,54,55], these findings

suggested that miRNAs could be mediators of full-length HBx-

triggered growth-suppression.

In sharp contrast, we demonstrated that Ct-HBx distinctively

repressed a subset of growth-inhibitory miRNAs that were induced

by its full-length counterpart (Figure 3 and Table 2). These

findings provide mechanistic insight into how Ct-HBx abrogates

full-length HBx-induced apoptosis [10,11] and stimulates hepato-

cellular growth [13–15]. Although HBx does not bind to DNA

directly, it is capable to trans-activate transcription elements in the

nucleus [4]. Recent studies have also shown that HBx achieves

transcriptional suppression of important cancer-related genes e.g.

TERT by enhancing promoter binding of transcription repressor

like MAZ or physically interacting with the chromatin-modifying

enzyme histone deacetylase 1 [56,57]. In the present study, we

show for the first time that Ct-HBx binds to the promoters of

growth-inhibitory miRNAs for transcriptional suppression

(Figure 4), presumably through its physical association with

transcriptional repressors in the gene promoters [56,58]. We

speculate that this direct transcriptional regulation by Ct-HBx

represents one of its major biological functions, since it has been

shown to preferentially localize in the nucleus in contrast to the

more cytoplasmic-orientated full-length counterpart [4,44]. In

addition, we demonstrated that full-length HBx bound to some

miRNA promoters (Figure S2). In some cases full-length HBx

bound to similar promoter region with Ct-HBx and in other cases

different or even no binding regions. The potential diverse cis-

regulatory modules (combination of transcription factor binding

sites) in these distinct promoter regions and thus transcription

factor partners [25] might determine the regulatory function of

HBx on miRNA transcription. In addition to miRNAs, our ChIP-

chip analysis also demonstrated that Ct-HBx physically associates

with promoters of protein-coding tumor-suppressors for gene

silencing (Zhu, Cheng et al., unpublished data). Because these

down-regulated genes may directly contribute to hepatocarcino-

genesis, the molecular basis of such regulations e.g. the identity of

Figure 4. Direct transcriptional repression of miRNAs by Ct-HBx. (A) ChIP assays were performed with specific HBx antibody in HBxD35-
expressing MIHA hepatocytes and EGFP-expressing (vector) control cells. ChIP-chip was performed to identify the promoters directly associated with
Ct-HBx using a human promoter microarray that contains 17,861 protein-coding and 238 miRNA genes. The Y-axis of the HBx binding maps
represents the enrichment ratio (HBxD35/Vector) while the X-axis represents the probe locations relative to the transcription start site (TSS) of
miRNAs. Dotted lines indicative of no enrichment are shown as reference. Gray bars indicate the miRNA promoter regions cloned for luciferase assay.
(B) Confirmation of Ct-HBx binding on the miRNA promoters by real-time PCR analysis. The immunoprecipitated DNA corresponding to the miRNA
promoters was measured by quantitative PCR as a percent of input DNA. Results are relative binding level of HBx in HBxD35 compared to vector
control cells. Data are presented in triplicates (6 SD). miR-193 which shows no promoter binding in microarray serves as negative control. (C) Effect of
Ct-HBx and full-length HBx on miRNA promoter activity in 293FT cells. Luciferase activity relative to Renilla control was measured. Data are presented
in triplicates (6 SD). *, p,0.05; ***, p,0.005.
doi:10.1371/journal.pone.0022888.g004

Carboxyl-Truncated HBx Regulates MicroRNAs

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e22888



specific transcriptional regulators and their functional interaction

warrants further investigation.

As HBx is frequently integrated into the host genome in

truncated form and over-expressed in HBV-associated HCC [10–

13], Ct-HBx-mediated transcriptional repression may be one of

the reasons underlying the reduced expressions of miR-26a and -

29c in HCC cells (Table 2 and Figure S1). One of the limitations

of this study is the lack of enough HCC tissue samples for HBx

protein expression analysis. In addition, the relatively small case

numbers also hinders a solid conclusion to be drawn. Thus, we

cannot exclude the possibility of the involvement of other

mechanisms such as liver-enriched transcription factors in the

transcriptional regulation of these miRNAs in human HCC [59].

We demonstrated that the expression levels of miR-146a and -190,

along with miR-26a and -29c, were significantly lower in HCCs

compared to the matching non-tumor tissues (Figure 5). Together

with the reported down-regulation of miR-30d and -193b in other

malignancies [36,40,51–53], it is conceivable that specific miRNA

repression is vital for Ct-HBx-mediated hepatocarcinogenesis. For

example, viral-mediated administration of miR-26a in a mouse

Figure 5. Expression of Ct-HBx-repressed miRNAs in HBV-associated HCCs and the matching non-tumor tissues. (A) PCR analysis of C-
terminal HBx truncation in tissue specimens. A schematic diagram showing the positions of forward and reverse primers encompassing the promoter
(F1) and C-terminus (R1 to R5) of HBx gene, respectively. (B) Detection of full-length HBx and Ct-HBx by PCR using different primer sets. Equal
quantity of DNA was used for each PCR reaction as determined by GAPDH gene amplification (data not shown). NT, matching non-tumor tissue; T,
HCC tumor tissue. (C) Expression of miRNAs in clinical specimens by real-time PCR analysis. The miRNA expression was normalized with RNU6B and
the relative expression level between HCC tumors (T) and the matching non-tumor (NT) tissues are shown.
doi:10.1371/journal.pone.0022888.g005
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model of HCC resulted in inhibition of cancer cell proliferation,

induction of tumor-specific apoptosis, and dramatic protection

from disease progression [31]. We and others have recently

demonstrated that miR-26a possessed the tumor-suppressive

functions by directly targeting the EZH2 oncogene in cancers

e.g. nasopharyngeal carcinoma [30], lymphoma [60] and HBV-

associated HCC cells (Figure S3). Moreover, we found that the

histone methyltransferase EZH2 [61] was over-expressed in

human HCCs and promoted HCC cell growth and tumorigenicity

at least partially through activation of Wnt/b-catenin signaling

[24,62]. Therefore, Ct-HBx might promote HCC development

via the deregulation of miR-26a control on the EZH2 epigenetic

machinery [63]. This notion is further supported by findings from

large cohorts of HBV-associated HCCs demonstrating that

patients whose tumors had low miR-26a expression had shorter

overall survival than those with high tumor miR-26a expression

[64].

Another important miRNA transcriptionally repressed by Ct-

HBx was miR-29c, whose down-regulation was significantly

associated with worse disease-free survival of HCC patients [34].

This miRNA has been shown to repress HCC growth in vitro and in

vivo through promotion of apoptosis by targeting anti-apoptotic

molecules, Bcl-2 and Mcl-1 [34]. Apart from apoptosis pathway,

we and others have also determined the roles of miR-29 in

controlling differentiation, DNA methylation and p53 pathways

via repression of YY1 [65], DMNT3A/3B [35] and CDC42 and

p85 alpha [66], respectively. Furthermore, miR-146a, -193b and -

29c have been shown to inhibit tumor cell invasiveness and

metastatic potential by repressing EGFR, urokinase-type plasmin-

ogen activator and extracellular matrix proteins, respectively

[52,67,68]. Taken together, Ct-HBx, via its repressed miRNAs

and the corresponding perturbed gene-networks, may not only

cause uncontrolled growth placing large numbers of cells

susceptible to neoplastic transformation but also promote tumor

progression.

In conclusion, this study uncovers the role of HBx, especially the

naturally occurring carboxyl-terminal truncated mutant, in

regulating cellular miRNAs of human hepatocytes. In contrast to

its full-length counterpart, Ct-HBx distinctively down-regulated a

set of growth-inhibitory miRNAs and concordantly promoted the

growth of hepatocytes. Our integrative miRNA profiling and

ChIP-chip analysis also highlights the nuclear trans-repressor role

of Ct-HBx in miRNA regulation. Together with the miRNA

expression analysis in clinical specimens, our findings suggest that

Ct-HBx, at least in part, drives the miRNA transcriptional

program in HCC development and represents a new therapeutic

target for HCC treatment.

Supporting Information

Figure S1 Effects of HBx in LO2 immortalized human
hepatocyte cell line. (A) Effect of full-length HBx and Ct-HBx

on cell proliferation. Growth of LO2 hepatocytes expressing full-

length HBx, HBxD35 or empty vector control was determined by

cell counting assay. Results are derived from 3 replicates of 2

independent experiments (6 SD). (B) Expression of miR-26a and

miR-29c in LO2 hepatocytes expressing HBxD35 or empty vector

control. miRNA expression was measured by quantitative PCR

using miScript Reverse Transcription and miScript SYBR Green

PCR kits (Qiagen). *, p,0.05; **, p,0.01; ***, p,0.005.

(PPT)

Figure S2 Binding of full-length HBx and Ct-HBx in
miRNA promoters. ChIP assays were performed with specific

HBx antibody in MIHA hepatocytes expressing full-length HBx,

HBxD35 or EGFP vector control. Coupled with a human

promoter microarray, the binding regions of full-length HBx (blue

line) and HBxD35 (red line) compared to vector control in (A)

miR-23a/27a, (B) miR-26a and (C) miR-30d promoters were

shown. The Y-axis of the HBx binding maps represents the

enrichment ratio (full-length HBx or HBxD35/Vector) while the

X-axis represents the probe locations relative to the transcription

start site (TSS) of miRNAs. Dotted lines indicative of no

enrichment are shown as reference. Yellow bars indicate the

miRNA promoter amplicon regions in real-time ChIP-PCR assays

as shown on the right. The immunoprecipitated DNA corre-

sponding to the miRNA promoters was measured as a percent of

input DNA and depicted as relative binding level.

(PPT)

Figure S3 Effect of ectopic miR-26a over-expression on
EZH2 expression in PLC5 HBV associated HCC cell line.
(A) miR-26a expression upon Lipofectamine 2000-mediated

transfection of mimics was measured by quantitative PCR using

miScript Reverse Transcription and miScript SYBR Green PCR.

(B) Western blot analysis of EZH2 expression in PLC5 cells

following ectopic expression of miR-26a. b-actin was used as

loading control. Signal density was quantified by Glyko BandScan

software and defined as the ratio of EZH2 to b-actin. These data

suggested that miR-26a post-transcriptionally suppressed EZH2

expression in HCC cells.

(PPT)
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