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Abstract 24 

This study investigated the role of an allochthonous Gram-positive wastewater bacterium 25 

(Bacillus sp. KUJM2) selected through rigorous screening, for the removal of potentially 26 

toxic elements (PTEs; As, Cd, Cu, Ni) and promotion of plant growth under PTE-stress 27 

conditions. The dried biomass of the bacterial strain removed PTEs (5 mg L-1) from water by 28 

90.17-94.75 and 60.4-81.41%, whereas live cells removed 87.15-91.69 and 57.5-78.8%, 29 

respectively, under single-PTE and co-contaminated conditions. When subjected to a single 30 

PTE, the bacterial production of indole-3-acetic acid (IAA) reached the maxima with Cu 31 

(67.66%) and Ni (64.33%), but Cd showed an inhibitory effect beyond 5 mg L-1 level. The 32 

multiple-PTE treatment induced IAA production only up to 5 mg L-1 beyond which inhibition 33 

ensued. Enhanced germination rate, germination index and seed production of lentil plant 34 

(Lens culinaris) under the bacterial inoculation indicated the plant growth promotion 35 

potential of the microbial strain. Lentil plants, as a result of bacterial inoculation, responded 36 

with higher shoot length (7.1-27.61%), shoot dry weight (18.22-36.3%) and seed production 37 

(19.23-29.17%) under PTE-stress conditions. The PTE uptake in lentil shoots decreased by 38 

67.02-79.85% and 65.94-78.08%, respectively, under single- and multiple-PTE contaminated 39 

conditions. Similarly, PTE uptake was reduced in seeds up to 72.82-86.62% and 68.68-40 

85.94%, respectively. The bacteria-mediated inhibition of PTE translocation in lentil plant 41 

was confirmed from the translocation factor of the respective PTEs. Thus, the selected 42 

bacterium (Bacillus sp. KUJM2) offered considerable potential as a PTE remediating agent, 43 

plant growth promoter and regulator of PTE translocation curtailing environmental and 44 

human health risks. 45 

 46 

Keywords: Bacillus sp.; potentially toxic elements; IAA production; plant growth 47 

enhancement; bioremediation; environmental management 48 
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1. Introduction 49 

The concentrations of potentially toxic elements (PTEs) have been increasing globally in 50 

different domains of the environment for the last several decades. Emanating from a myriad 51 

of lithogenic and anthropogenic sources predominantly due to rapid industrialization, 52 

improper waste disposal, intensive use of chemical fertilizers and pesticides and mining 53 

activities, PTEs have built up in the environment to an alarming level (Bolan et al., 2014; 54 

Han et al., 2018). Most of these PTEs are persistent in nature, and some even can cross the 55 

trophic boundary. They adversely affect the water and soil quality, crop productivity, health 56 

of biota including human beings, and overall ecosystem health and services (Huang et al., 57 

2018; Goutam et al., 2018). For example, some elements (Cu, Ni and Zn) considered as 58 

micronutrients for plants become toxic at high concentrations (Adrees et al., 2015; 59 

Emamverdian et al., 2015; Khan et al., 2015), whereas other non-essential PTEs such as Cd, 60 

Pb, Hg and As adversely affect enzymatic activity, mitosis, photosynthesis, plant growth, 61 

respiration, germination and biological production even at low concentrations (Khan et al., 62 

2015; Etesami, 2018).  63 

A PTE-contaminated environment forces microorganisms to adopt various metabolic 64 

strategies and different degree of resistance/tolerance (Gillan et al., 2014). The PTE- 65 

resistant/tolerant bacteria have the capability to grow in the presence of high concentration of 66 

PTEs (Biswas et al., 2017; 2018). They interact with PTEs in diverse ways to reduce the 67 

toxicity and develop resistance to those elements by adopting several strategies (Rajkumar et 68 

al., 2012; Ma et al., 2016; Ndeddy Aka and Babalola, 2016; Huang et al., 2018). Bacterial 69 

bioaccumulation of PTEs is accomplished by an energy dependent metabolic process, 70 

whereas biosorption is an energy independent sequestration mediated by ion exchange, 71 

adsorption, chelation and entrapment (Gadd, 2000). Immobilization of PTEs can be effected 72 

by some bacteria through dissimilatory reduction or interaction with metabolic products of 73 
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hydroxide, sulphide, phosphate and carbonate (Rajkumar et al., 2012). Many bacterial 74 

products having adhesive properties, such as organic acids, alcohols, polysaccharides, humic 75 

and fulvic acids can entrap PTEs and their sulphides and oxides, whereas anionic groups of 76 

peptidoglycan component of the bacterial cell wall can bind with PTE ions (Wu et al., 2010). 77 

Bacteria use many PTEs as terminal electron acceptor, and reduce them to their lower redox 78 

state (Gadd, 2000), mobilize or immobilize the elements depending on their chemical species 79 

(Bolan et al., 2014). Some metal(loid)s may also be removed by microbe-mediated 80 

methylation process in the form of volatile products, e.g., dimethylmercury, trimethyl arsine 81 

or dimethyl selenide (Wu et al., 2010).  82 

Many bacteria have plant growth promotion capacity attributed to their ability to synthesis of 83 

plant growth hormones. Indole-3-acetic acid (IAA) plays the key role in inducing plant 84 

growth in association with gibberellic acid (GA) and 1-aminocyclopropane-1-carboxylate 85 

(ACC) deaminase (Ma et al. 2015; Ndeddy Aka and Babalola, 2016; Han et al., 2018). IAA is 86 

metabolized mainly from L-tryptophan through indole-3-pyruvic acid by plants and microbes 87 

(Duca et al., 2014). The IAA production promotes cell division, stimulates germination, 88 

general plant growth and development, and imparts resistance to stress (Tsavkelova et al., 89 

2006; Goswami et al., 2014). The bacterial IAA can loosen plant root cell walls and increase 90 

root exudates production, which facilitates rhizospheric microbial colonization and nutrient 91 

acquisition (James et al., 2002; Chi et al., 2005). IAA also provides protection against 92 

external stress by enhancing coordination of different cellular defence systems (Bianco and 93 

Defez, 2009). Even in PTE-contaminated environments, some Bacillus species have been 94 

reported to stimulate plant growth, increase PTE immobilization and decrease PTE uptake 95 

and translocation (Rajkumar et al. 2013; Ndeddy Aka and Babalola, 2016; Han et al., 2018).  96 

The conventional physicochemical PTE removal methods are often economically expensive, 97 

energy intensive and environmentally invasive (Vishan et al., 2017). Bacteria-mediated 98 
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remediation of PTEs may have the potential to overcome these limitations (Wang et al., 99 

2018), but a huge knowledge gap exists regarding the efficacy of bacterial intervention in the 100 

clean-up of PTEs in co-contaminated environmental matrices. Further, there is a paucity of 101 

information on how IAA production is induced or inhibited by multiple-PTE stress, how the 102 

PTE translocation to plants can be modulated by tolerant bacteria (e.g., Bacillus sp.), and its 103 

implication in the quantity and quality of agricultural crops.  104 

It was hypothesized that a successfully isolated multiple PTE-resistant bacterium endowed 105 

with plant growth enhancing traits could be exploited as an agent of PTE removal and plant 106 

growth promotion. Banking on the merits of intimate tripartite interactions among plants, 107 

microorganisms and PTEs, the present study was undertaken with the following objectives: 108 

(1) to isolate and characterize a novel and efficient multiple PTE-resistant bacterial strain 109 

from wastewater source contaminated with low concentrations of selected PTEs; (2) to assess 110 

the resistance to and removal of PTEs by the selected PTE-resistant bacterium, and its 111 

potential in inducing IAA production and growth promotion of lentil plant under single and 112 

multiple-PTE stress conditions; and (3) to evaluate the impact of introduction of the 113 

allochthonous bacterial strain to a soil spiked with  single or multiple PTEs in modulating 114 

PTE immobilization, partitioning and translocation in the lentil plant.  115 

 116 

2. Materials and methods 117 

2.1. Isolation of the PTE-resistant bacterial strain 118 

The raw wastewater samples were collected in sterile plastic containers from the grid 119 

chamber of the Kalyani Sewage Treatment Plant, Kalyani, West Bengal, India. Using 120 

standard spread plate method, the bacterial isolates were screened on glucose minimal salt 121 

agar plates supplemented with multiple-PTE each having the final concentration of 0.5 mg L-
122 
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1 in the medium. The specific concentration of individual PTE was prepared using respective 123 

salt (AsNaO2 + Na2HAsO4; CdCl2·H2O; CuCl2·2H2O and NiCl2·6H2O) solutions. Plates were 124 

incubated at 37 °C for 48 h. Initially, 85 PTE-resistant bacterial isolates were selected and 125 

further inoculated using streak plate method on the agar plate containing gradually increasing 126 

concentrations of PTEs. Based on the resistance potential, 12 isolates were subsequently 127 

selected. After rigorous screening of those 12 isolates under heightened PTE challenge, the 128 

most promising one was finally selected for further studies.  129 

 130 

2.2. Biochemical characterization  131 

The selected isolate was grown in glucose minimal salt medium at 35 °C and pH 7. The 132 

isolated bacterial strain was physiologically and biochemically analysed for the properties of 133 

Gram staining (Aneja, 2004), motility (Aneja, 2004), indole production (Aneja, 2004), 134 

methyl red (Benson, 2002), Voges–Proskauer (Benson, 2002), citrate utilization (Aneja, 135 

2004), amylase (Bird and Hopkins 1954), catalase (Aneja, 2004), urease (Bhattacharya et al., 136 

2014), lipase (Benson, 2002), cellulase (Huang et al., 2012) and ACC deaminase (Penrose 137 

and Glick, 2003) activities, gelatin hydrolysis (Sundaramoorthi et al., 2011), nitrate reduction 138 

(Benson, 2002), phosphate solubilization (Hussain et al., 2016), IAA production (Biswas et 139 

al., 2017), GA3 production (Halbrook et al., 1961), extracellular polymeric substances (EPS) 140 

production (Parai et al., 2018), triple sugar iron test (Aneja, 2004), and carbohydrate 141 

fermentation (Benson, 2002) (Suppl. Table 1). 142 

 143 

2.3. Identification of the bacterial strain 144 

The identification of the isolated bacterial strain was made following 16S rRNA gene 145 

sequencing method. The 16SrRNA gene was amplified through polymerase chain reaction 146 
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(PCR).  The genomic DNA of the strain was extracted and used as the template. The bacterial 147 

universal forward and reverse primers, 27F(5´-AGAGTTTGATCMTGGCTCAG-3´) and 148 

1492R (5´-GGTTACCTTGTTACGACTT-3´) were employed for PCR (Biswas et al., 2017). 149 

The PCR product was subjected to agarose gel electrophoresis, and the band of interest (1.5 150 

kb) was purified using HiPurA Quick Gel Purification Kit (HiMedia Laboratories, India). The 151 

purified 16SrRNA gene was then transformed using pGEM-T Easy Vector System I 152 

(Promega Corporation, USA) in Escherichia coli JM109 competent cells to attain greater 153 

accuracy and desired quality. The plasmid DNA was isolated from the transformed cell using 154 

QIAprep Spin Miniprep Kit (Qiagen, Germany), and used for sequencing performed by 155 

Eurofins Genomics, Bengaluru, India. The Basic Local Alignment Search Tool (BLAST) at 156 

National Center for Biotechnology Information (NCBI) enabled the comparison of the 16S 157 

rRNA gene sequence with relevant sequences available in the GenBank database. The 158 

sequence alignment was performed in Clustal W. The phylogenetic tree was drawn with 159 

MEGA10 software following the neighbour joining method and Jukes-Cantor distance 160 

correction (Choudhary and Sar 2011; Biswas et al., 2017). The 16S rRNA gene sequence was 161 

deposited to the GenBank (NCBI). 162 

 163 

2.4. Optimization of growth conditions 164 

The temperature, pH and salinity for the maximum growth of the strain were optimized in 165 

glucose minimal salt medium. The bacterial strain was inoculated in sterile media and 166 

incubated at different temperatures (25, 30, 35, 37, 40 and 45 °C) to obtain the optimum 167 

temperature for bacterial growth. The pH of the medium was adjusted with 1N NaOH or HCl 168 

to obtain different pH values (3, 4, 5, 6, 7, 8, 9, 10 and 11) to ascertain the optimum pH. To 169 

determine the growth, optical density (OD) of the growing culture was measured at 600 nm. 170 
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The salinity for optimum growth of the strain was examined by increasing NaCl 171 

concentrations up to 9% (w/v) of the culture medium. The pH of the media was maintained at 172 

7.0 ±0.2 by adjusting with 1N NaOH/HCl. Then the overnight culture of isolated strain was 173 

inoculated to the respective media, and incubated at 35 °C for 24 h. The OD was measured at 174 

600 nm (Segner et al., 1971). The test was performed in triplicates. The growth curve of the 175 

isolated strain was generated under optimum growth conditions. 176 

 177 

2.5. Determination of PTE tolerance limit 178 

Maximum tolerance limit (MTL) against individual PTE was determined by growing the 179 

selected bacterial strain in the glucose minimal salt medium with increasing PTE 180 

concentration until the strain failed to grow in the medium. The bacterial growth was 181 

measured at 600 nm. The same procedure was followed on minimal salt agar plates, and the 182 

bacterial growth was examined visually. The concentrations of PTEs were increased 183 

gradually from 5 mg L-1 up to respective tolerance limit tested. The isolated strain grown 184 

in/on lower concentration was used as inoculum for the successive higher concentrations. The 185 

highest concentration at which bacterial strain was able to grow was considered as the 186 

maximum tolerance limit (MTL).  187 

On the other hand, the MTL against multiple PTEs was also examined. In this case, 5 mg L-1 188 

each of all five PTEs (As(III), As(V), Cd, Cu and Ni) were added within a glucose minimal 189 

salt medium. Then the isolated strain was inoculated (Biswas et al., 2017). For ascertaining 190 

the MTL of the strain subject to multiple PTEs together, the concentrations of those selected 191 

PTEs were gradually increased up to 50 mg L-1 in the growth medium. Concentrations of the 192 

individual elements were increased differentially depending upon their ultimate tolerance 193 

until the strain failed to grow in the medium. Bacterial growth was measured at 600 nm. The 194 
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same procedure was followed on minimal salt agar plates, and the bacterial growth was 195 

examined visually. The maximum limiting concentration of the specific combination of PTEs 196 

(As(III), As(V), Cd, Cu and Ni) in the medium beyond which the strain was unable to grow 197 

was considered as the MTL for multiple-PTE. 198 

 199 

2.6. Estimation of IAA production  200 

The isolate was grown in 50 mL of glucose minimal salt medium supplemented with 1, 2, 5 201 

and 10 mg L-1 L-tryptophan for 6 days at 35 °C. After incubation the bacterial medium was 202 

processed, and IAA produced by the bacterial strain was quantified following the protocol 203 

prescribed by Biswas et al. (2017).  204 

The IAA production potentials of the strain in the presence of individual and multiple-PTE 205 

were also determined. Different concentrations (0.5, 2.5, 5, 10, 20, 30, 40 and 50 mg L-1) of 206 

the selected PTEs were added into individual growth medium for the single-PTE system. In 207 

multiple-PTE system, the selected elemental concentrations ranged between 0.5 to 30 mg L-1. 208 

The PTEs were added in a growth medium where the total concentration of As comprised 209 

As(III) and As(V) species added in equal proportion to maintain the final ratio of 210 

As:Cd:Cu:Ni at 1:1:1:1.  211 

 212 

2.7. Estimation of seed germination and seedling growth 213 

The seed germination promotion activity of the isolate was performed on surface sterilized 214 

lentil (Lens culinaris, variety Asha) seeds. The bacterial strain was grown in glucose minimal 215 

salt medium for 24 h at 35 °C and germination success was monitored in the laboratory for 8 216 
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days following the standard method (Biswas et al., 2017). The germination rate was 217 

calculated using Eq. 1 (Islam et al., 2016). 218 

Germination	rate	�%
 =
Number	of	germinated	seeds

Total	number	of	seeds
× 100 

           Eq. (1) 219 

The root and shoot length of the seedlings were measured after 8 days of germination. The 220 

relative seed germination (RSG), relative root growth (RRG), relative shoot growth (RShG) 221 

and germination index (GI) were calculated using the following equations (Hussain et al., 222 

2018): 223 

RSG	�%
 =
Number	of	seeds	germinated	in	bacteria	treated	system

Number	of	seeds	germinated	in	control	system
× 100 

           Eq. (2) 224 

RRG	�%
 =
Mean	root	length	of	seedlings	in	bacteria	treated	system

Mean	root	length	of	seedlings	in	control	system
× 100 

           Eq. (3) 225 

RShG	�%
 =
Mean	shoot	length	of	seedlings	in	bacteria	treated	system

Mean	shoot	lenth	of	seedlings	in	control	system
× 100 

           Eq. (4) 226 

GI	�%
 =
RRG × RShG

100
 

           Eq. (5) 227 

 228 

2.8. Evaluation of PTE removal efficiency 229 
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The PTE removal efficiency of the bacterial isolate was determined as outlined in Ren et al. 230 

(2015) and Vishan et al. (2017) with some modification. The isolated strain was grown in 231 

filtered and sterilized wastewater (from where the bacterial strain was isolated) supplemented 232 

with 0.05% yeast extract. Mid log phase cells were harvested by centrifugation at 5000 rpm 233 

for 10 min. Then the cell pellet was washed three times with 0.85% NaCl, and was vacuum 234 

dried at 60 °C. In case of individual PTE removal, 10 mg L-1 each of As(III), As(V),  Cd, Cu 235 

and Ni was prepared in respective 100 mL sterile Mili-Q water while maintaining the pH at 236 

7.0 ± 0.2. On the other hand, for multiple-PTE removal, all had initial concentration of 10 mg 237 

L-1. The PTE concentrations of As (As(III): 5 mg L-1 + As (V): 5 mg L-1),  Cd, Cu and Ni 238 

were prepared and added in a 100 mL sterile Mili-Q water maintaining the pH at 7.0 ± 0.2. 239 

Then 0.5 mg mL-1 of the dried cell was added to all systems, and incubated at 35 °C at 150 240 

rpm for 72 h. The sets without addition of any dried cell served as control. At different time 241 

intervals (0, 3, 6, 12, 24, 48 and 72h), 10 mL of sample was centrifuged at 8000 rpm for 3 242 

min. The supernatant was collected and acidified with concentrated HNO3, and the PTEs 243 

were measured using atomic absorption spectrometer (AAS) (AAnalyst 200, PerkinElmer, 244 

USA). The standard solutions (Fluka Analytical, Switzerland) of respective PTEs were set as 245 

references. The removal efficiency of a specific PTE was measured indirectly by measuring 246 

the available PTE in the solution following Eq. 6 (Biswas et al. 2018). 247 

Removal	efficiency	�%
 =
�Initial	PTE	concentration − Final	PTE	concentration


Initial	PTE	concentration
	× 100 

           Eq. (6) 248 

The PTE removal efficiency was also examined at different pH values (pH 5, 6, 8 and 9), 249 

temperatures (25 and 45 °C) and concentrations (5, 20 and 50 mg L-1). All single-PTE system 250 

contained respective levels of As(III), As(V), Cd, Cu and Ni, whereas in multiple-PTE 251 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 

 

system total arsenic was split into As(III) and As(V) added at an equal proportion so that the  252 

final ratio of PTEs (As:Cd:Cu:Ni) stood at 1:1:1:1. 253 

The PTE removal was also estimated using live bacterial cells at the optimum pH (pH 7 for 254 

As, and pH 6 for Cd, Cu and Ni) and temperature (35 °C). Bacterial cells were isolated as 255 

stated earlier. The number of live cells per mL added to different concentrations (5, 10, 20 256 

and 50 mg L-1) of both individual and multiple-PTE systems were equivalent to the number 257 

of bacterial cells harvested in 0.5 mg mL-1 dried cell. The protocol followed for the removal 258 

experiment was similar as stated for dried bacterial biomass except an extended incubation 259 

period (96 h) since the removal efficiency continued to reach the plateau. 260 

 261 

2.9. Mesocosm study 262 

The plant growth promotion, and PTE partitioning and translocation induced by the selected 263 

bacterial strain under PTE stress conditions were examined on lentil (Lens culinaris, variety 264 

Asha). In this experiment, a sterilized garden soil (1.5 kg/pot; pH 7.41, electrical conductivity 265 

168 µS cm-1, oxidation reduction potential (Eh) 472 mV; nitrate concentration 31.14 mg kg-1, 266 

ammoniacal nitrogen concentration 10.89 mg kg-1 and available phosphate 9.32 mg kg-1) 267 

collected from the University of Kalyani campus  was spiked with As (40 mg kg-1), Cd (6 mg 268 

kg-1), Cu (200 mg kg-1) and Ni (150 mg kg-1). For the individual-PTE systems, the specific 269 

level was added to the individual pot. For multiple-PTE systems, 40 mg kg-1 of As (As(III): 270 

20 mg kg-1 + As(V): 20 mg kg-1), 6 mg kg-1 of Cd, 200 mg kg-1 of Cu and 150 mg kg-1 of Ni 271 

were added altogether. To the respective pot, either 5 mL of bacterial suspension or PTE-free 272 

sterilized water (control) was added and allowed to equilibrate for 2 days. Lentil seeds were 273 

surface sterilized as mentioned earlier, and treated either with bacterial suspension or PTE-274 

free sterilized water (control) for 1 h, and six seeds were sown in each pot. After eight days of 275 
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germination, the seedlings were thinned, and four seedlings were kept in each pot. The pots 276 

were irrigated with measured amount of PTE-free sterilized water with a sprinkler in such a 277 

way that the desired soil moisture content (at field capacity) is maintained but no excess 278 

water can cause any leaching. Three different sets of control were maintained; one set 279 

without any addition of PTE and bacterial inoculum, the second control set received PTE but 280 

no bacteria, and the third received extraneous introduction of bacteria but no PTE. All the 281 

sets were maintained in triplicates. At 20 days interval, either 5 mL of bacterial suspension (8 282 

log CFU mL-1) or PTE-free sterilized water (control) was added to the respective pots. For 283 

establishing rhizosphere colonization of the bacterial strain, the rhizospheric soil suspension 284 

was prepared and inoculated on glucose minimal salt agar medium supplemented with 285 

multiple-PTE at respective MTL concentrations (Mallick et al., 2014). After 120 days, 286 

subsamples were collected from different spots and layers to make a pooled sample and 287 

mixed together to make it homogenous, for estimation of PTEs in the soil of each pot. Lentil 288 

shoot and seed samples were also collected. All soil, plant and seed samples were digested in 289 

acid mixture (Bhattacharya et al., 2010) before analysing the amounts of PTE in the digested 290 

aliquots using AAS.  291 

The translocation factors (TF) of the PTE from soil to shoot, shoot to seed and soil to seed 292 

were calculated following Eq. 7. Here the term ‘shoot’ has been used to represent the crop 293 

plant’s aerial part without seed. 294 

TF =
Concentration	of	PTE	in	shoot	or	seed

Concentration	of	PTE	in	soil	or	shoot
 

           Eq. (7) 295 

 296 

2.10. Statistical analyses 297 
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The data were subjected to appropriate statistical validations using GraphPad Prism 7.00 298 

software.  Two-way ANOVA was performed for PTE removal, germination rate, IAA 299 

production, PTE concentration in different parts of the plant, translocation factors, plant 300 

phenotypic features and seed production, under single and multiple-PTE conditions. 301 

Treatment differences were verified by the Least Significant Difference (LSD) test. 302 

Correlation between bacterial IAA production and tryptophan concentration was performed 303 

using linear regression model.  304 

 305 

3. Results  306 

3.1. Identification and biochemical characterization of the bacterial strain 307 

The phylogenetic tree and taxonomic identity of the isolated bacterial strain are presented in 308 

Fig. 1. The dendrogram based on the similarity search in NCBI database and Ribosomal 309 

Database Project confirmed the bacterial isolate as a strain of Bacillus sp. The GenBank 310 

accession no. for Bacillus sp. KUJM2 is MH732910.  311 

The isolated strain Bacillus sp. KUJM2 was found to be a rod-shaped, motile, Gram positive 312 

bacterium. It produced white, medium-size colonies on the agar plate. The morphological and 313 

biochemical characteristics are shown in Table 1. The isolate showed positive response to 314 

methyl red, citrate utilization, catalase, cellulase and nitrate reduction. On the other hand, it 315 

showed negative response to indole production, Voges-Proskauer, gelatine liquefaction, 316 

amylase, lipase, urease and H2S production tests. In the presence of glucose and sucrose, the 317 

acid production was also observed. The isolated bacterial strain showed potential of 318 

producing IAA and GA3, and exhibited ACC deaminase activity, but no phosphate 319 

solubilization potential (Table 1).  320 

 321 
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3.2. Optimization of growth conditions 322 

The optimum growth conditions (pH, temperature and salinity) and growth curve of the 323 

isolated strain are presented in Suppl. Fig. 1. The isolated strain showed the potential to grow 324 

under a wide range of pH 3-10, with the optimum growth at pH 7; above pH 9 and below pH 325 

5 the growth declined sharply. The isolate showed the capability of growing under a wide 326 

spectrum of temperature (20-45 °C) and salinity (0.5-9% NaCl). The growth tended to 327 

increase gradually with increase in temperature up to 35 °C, which decreased 328 

disproportionately above 40 °C. The isolate showed an increasing trend in growth with 329 

increasing salt concentration up to 2%, which is considered as the optimum salinity (Suppl. 330 

Fig. 1). The growth rate of the bacterial strain showed an exponential increase up to 4 h. 331 

Continuous increase in growth was registered up to 7 h to reach a stationary phase thereafter. 332 

 333 

3.3. Tolerance to PTEs 334 

The bacterial (Bacillus sp. KUJM2) maximum tolerance limits (MTL) to PTEs varied 335 

significantly showing the following order: As(V)>As(III)>Cu>Ni>Cd (LSD test; P<0.05). 336 

Subject to single-PTE conditions the maximum bacterial tolerance was recorded against As 337 

(As(V) 60,000 mg L-1; As(III) 4500 mg L-1), followed by  Cu (905 mg L-1), Ni (425 mg L-1) 338 

and Cd being the least (140 mg L-1). Under multiple-PTE challenge, the bacterial strain 339 

showed a similar tolerance trend to individual elements (1400 mg L-1 of As(V); 600 mg L-1 of 340 

As(III); 300 mg L-1 of Cu; 205 mg L-1 of Ni; 85 mg L-1 of Cd), but registered lowered MTL 341 

values for respective individual PTE (Cd 39.29, Ni 51.76, Cu 66.85, As (III) 86.67, As (V) 342 

97.67%).  343 

 344 

3.4. IAA production potential 345 
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The bacterial strain Bacillus sp. KUJM2 showed a considerable potential for IAA production 346 

as a direct function of L-tryptophan concentration with a strong correlation (R2=0.9751). 347 

With increasing concentrations of L-tryptophan, the isolate produced consistently higher 348 

concentration of IAA (38.69, 46.33, 54.90 and 68.61 µg mL-1 IAA at 1, 2, 5 and 10 mg L-1 of 349 

L-tryptophan, respectively).  350 

The isolated strain maintained IAA production capacity both under single and multiple-PTE 351 

conditions (Fig. 2). Under single-PTE challenge, the IAA production increased significantly 352 

(P<0.05) by 7.57, 23.45, 12.27, 7.55 and 20.01% when exposed to 2.5 mg Cd L-1, 2.5 mg 353 

As(III) L -1, 5 mg As(V) L-1, 10 mg Ni L-1 and 20 mg Cu L-1, respectively (Fig. 2a). When the 354 

bacterial culture was spiked with multiple PTEs [comprising As(III+V, 1:1), Cd, Cu and Ni at 355 

2.5 mg L-1 each], the IAA production was also observed to be significantly (P<0.05) 356 

enhanced by 16.30% (Fig. 2b). Contrarily, IAA production was found to be decreased 357 

significantly at higher concentration of individual PTEs (Cd, As(III), As(V), Ni, Cu) in the 358 

medium  from 10, 20, 20, 30, 40 mg L-1, respectively, showing the following order of 359 

variation: Cd (22.79-77.39%)>As(III) (9.73-35%), As(V) (6.78-30.61%)>Ni (12.17-360 

29.25%)>Cu (8.8-18.29%) (P<0.05). On the other hand, IAA production decreased 361 

significantly (P<0.01) for multiple-PTE contaminated medium by 26.55 to 49.29% with 362 

increase in the concentration of multiple PTEs from 10 to 30 mg L-1.   363 

 364 

3.5. PTE removal efficiency   365 

The isolated strain (Bacillus sp. KUJM2) was capable of removing PTEs from both single 366 

and multiple-PTE exposure systems (Fig. 3 & 4; Suppl. Fig. 2 & 3). The PTE removal by 367 

dried bacterial biomass was higher in the single-PTE systems than the multiple-PTE system 368 

irrespective of time, temperature, pH and PTE concentration (Fig. 3 & 4). Similar result was 369 
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observed for live cells (Suppl. Fig. 2 & 3). Dried bacterial biomass showed increasing PTE 370 

removal efficiency up to 48 h, whereas the live cell showed similar trend till 72 h followed by 371 

a steady state.  372 

In case of dried biomass sets containing single-PTE (10 mg L-1), the highest removal 373 

efficiency for Cd (77.90%), Cu (72.15%) and Ni (93.05%) was witnessed at pH 6 after 72 h, 374 

whereas the removal of As(III) (89.87 %) and As(V) (91.22%) peaked at pH 7 (Fig. 3). In 375 

contrast, at 35 °C, the lowest PTE removal was observed at pH 9 (Fig. 3). Overall, the results 376 

presented two distinct patterns for PTE removal across the pH range tested: pH 6>pH 5>pH 377 

7>pH 8>pH 9 for Cd, Cu and Ni; pH 7>pH 6>pH 5>pH 8>pH 9 for As(III) and As(V). The 378 

multiple-PTE systems showed similar pattern of PTE removal in dried bacterial biomass as 379 

observed in single-PTE exposure. In the multiple-PTE system, with the initial concentration 380 

of 10 mg L-1 and at 35 °C, the removal performance reached the maximum level at pH 6 for 381 

Cd (59.75%), Cu (49.30%) and Ni (62.84%) after 72 h, whereas the maximum removal of As 382 

(60.60%) was attained at pH 7.  383 

The highest and lowest PTE removals were observed at 35 °C and 25 °C when compared 384 

over an element-specific optimum pH across both single and multiple-PTE situations.  385 

However, as expected, the PTE removal efficiency decreased with their increasing 386 

concentration when tested the optimum temperature and element-specific optimum pH (Fig. 3 387 

& 4). In the single-PTE system containing dried cell biomass, the highest PTE removal was 388 

achieved at 5 mg L-1 among the tested concentrations with respective efficiencies of 92.36, 389 

93.14, 91.95, 90.17 and 94.75% for As(III), As(V), Cd, Cu and Ni, respectively. Similarly, in 390 

case of multiple-PTE system, the removal efficiencies ranged between 60.4 and 81.41% 391 

exhibiting an identical order of variation, i.e., Ni>As>Cd>Cu (Fig. 3 & 4).  In both single- 392 

and multiple-PTE systems, the lowest removal was observed at 50 mg L-1 among the tested 393 

concentrations. Two different patterns of single PTE removal was observed; for Ni, and both 394 
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species of As, major removal was witnessed up to 10 mg L-1, while Cd and Cu removal 395 

dropped strikingly after 5 mg L-1. Under multiple-PTE system, PTE removal mostly occurred 396 

up to 5 mg L-1.  397 

The removal of PTEs using live cells showed that in the single-PTE system the highest 398 

removal efficiencies (87.15 to 91.69%) were achieved at 5 mg L-1 among the tested 399 

concentrations in the following order of variation: Ni>As>Cd>Cu. For multiple-PTE system, the 400 

highest removal efficiency varied between 57.5 and 78.8% showing a similar pattern of 401 

removal (Suppl. Fig. 2 & 3). In both single- and multiple-PTE systems, the lowest removal 402 

efficiencies were observed at 50 mg L-1, with respective ranges of 53.94 to 73.02% and 25.53 403 

to 44.95%.  404 

 405 

3.6. Retention and partitioning of PTEs 406 

The results of the mesocosm study exhibited a distinct variation in soil PTE retention (Table 407 

2) after 120 days in the following order: Cu (88.39%)>Ni (86.89%)>As(V) (85.94%)>As(III) 408 

(82.63%)>Cd (75.5%). In bacteria engineered system, the soil retained higher amount of the 409 

applied PTEs compared to their corresponding controls (Table 2). The multiple-PTE system 410 

without bacterial inoculation showed higher retention of PTEs in the soil than the single-PTE 411 

counterpart but followed the similar order, Cu being the highest (89.03%) and Cd the lowest 412 

(76.06%).  413 

The isolated strain (Bacillus sp. KUJM2) successfully colonized in the rhizosphere of lentil 414 

grown under either control or PTE-treated soils. The allochthonous bacteria colonized in the 415 

rhizosphere comparatively better in the absence of PTE (~7 log CFU g-1 soil) than in the 416 

presence of PTEs (~5-6 log CFU g-1 soil). The exogenous introduction of bacterial inoculum 417 

was observed to induce growth of lentil significantly (P<0.05) while reducing PTE 418 
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concentration in different parts of the plant (Tables 2 & 3), and inhibiting PTE translocation 419 

in the plant body parts compared to respective controls (Fig. 5). In both single- and multiple-420 

PTE systems, shoots and seeds of the plant grown in the bacteria-engineered system 421 

contained lower concentrations of PTEs than those in the respective controls containing PTE 422 

but no bacterial inoculum (Table 2).    423 

In single- and multiple-PTE systems, the inoculated bacteria reduced soil-shoot PTE 424 

partitioning by 1.52-1.8% and 1.91-2.17%, respectively, while their corresponding controls 425 

without bacteria showed 5.1-8.93% and 5.63-9.67% partitioning. Similarly, bacteria 426 

inoculated system with single and multiple PTE dosing recorded lower PTE partitioning from 427 

soil to seed (0.13 to 0.2% and 0.19 to 0.29%) than their corresponding controls (0.53 to 428 

1.49% and 0.62 to 2.05%). In bacteria engineered systems, soil-shoot and shoot-seed 429 

translocation factor (TF) for all single PTEs decreased significantly (P<0.05) compared to 430 

their respective controls. In case of multi-PTE systems, although there was significant 431 

decrease in soil to shoot TFs for all PTEs over respective controls, no significant decrease 432 

was observed in shoot to seed TFs for all PTEs except Cd. Overall, soil-seed TFs decreased 433 

significantly in bacteria engineered systems over corresponding control, irrespective of PTE 434 

and nature of dosing, either singly or in combination.   435 

 436 

3.7. Effect on plant growth  437 

The rate of lentil seed germination increased significantly (P<0.05) in the presence of 438 

Bacillus sp. KUJM2 (81%) compared to that without bacterial inoculation (70.33%) while the 439 

relative seed germination (RSG) was also discernibly increased (115.24%). The relative root 440 

growth (RRG) and relative shoot growth (RShG) were promoted subject to bacterial 441 
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inoculation to reach 131.13 and 142.96%, respectively. The germination index (GI) under 442 

bacterial influence was recorded as 187.41%. 443 

The mesocosm study showed that the length and dry weight of shoot increased significantly 444 

(P<0.05) in all the treatments receiving single or multiple PTEs in the presence of the 445 

bacterial strain, whereas those without bacterial enrichment witnessed significant decrease 446 

(P<0.05) in those parameters (Table 3). However, a greater extent of decrease in shoot length 447 

and dry weight was observed in multiple-PTE condition without the bacterial inoculation 448 

(33.89 to 66.11%) than corresponding single-PTE condition (22.65 to 51.34%). Significant 449 

variations in such decreases were observed among the PTE exhibiting the following order: 450 

multi-PTE>Cd>As(III)>As(V)>Cu>Ni (P<0.05). Contrarily, in the presence of bacterial 451 

strain, shoot length and dry weight increased in single and multiple-PTE systems by 7.1 to 452 

27.61% and 18.22 to 36.3%, respectively, showing the following trend of variation: multi-453 

PTE>Cd>Cu>Ni>As(III)>As(V) (P<0.05).  In terms of seed production, the sets receiving 454 

single and multiple PTEs but no bacterial inoculum showed significant decrease (28.57-455 

62.86%) reflecting the same order as observed in case of shoot length and dry weight.  Seed 456 

production increased significantly in bacteria engineered PTE treated soils, but the order of 457 

variation among the treatments differed from that of shoot length and dry weight as stated: 458 

Cu>As(V)>As(III)>Ni>Cd>multi-PTE (P<0.05).  In the sets containing contaminants 459 

(As(III), As(V), Cd, Cu, Ni, multi-PTE), exogenous introduction of bacterial inoculum 460 

increased seed production by 27.91, 28.26, 24.14, 26.00, 29.17 and 19.23%, respectively, 461 

over their corresponding  controls (Table 3). 462 

 463 

4. Discussion  464 

4.1. Bacterial isolate: identification and characterization 465 
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The isolated bacterial strain (Bacillus sp. KUJM2 MH732910) belonged to the phylogenetic 466 

tree comprising bacterial strains characterized by PTE resistance potential, plant growth 467 

promotion capacity and varied biochemical properties (Zhang et al., 2009; Ndeddy Aka and 468 

Babalola, 2016). These bacterial strains exhibit extensive diversity, and have the ability to 469 

withstand extreme environmental conditions.  470 

Bacillus sp. KUJM2 was able to grow under a broad spectrum of pH (4-10) and temperature 471 

(20-45 °C), and showed appreciable salt tolerance (Suppl. Fig. 1). The bacterium faced 472 

unfavourable conditions and physiological stress, and was capable of exploiting marginal 473 

niche beyond the favourable window of pH and temperature (Biswas et al., 2017). The 474 

biochemical tests (Table 1) indicated metabolic activities involved in the nutritional and 475 

respiratory processes of the bacterium as reflected in its positive response to tests for methyl 476 

red, catalase, citrate utilization, cellulase and nitrate reduction. The bacterial traits of IAA and 477 

GA3 production and ACC deaminase activity indicated that Bacillus sp. KUJM2 could 478 

induce plant growth and reduce environmental stresses (Ma et al., 2011; Rajkumar et al., 479 

2012).  480 

 481 

4.2. Tolerance of PTE 482 

In sites contaminated with multiple PTE, selective microbe(s) can tolerate PTE stresses to 483 

variable degrees. Adaptation and resistance to such PTE stress develop over time. Here the 484 

bacterial strain Bacillus sp. KUJM2 was isolated from wastewater which was laden with 485 

PTEs but at low concentration (Rana et al., 2013). The strain was found to tolerate higher 486 

concentration of all the tested PTEs far exceeding the tolerance limits of Escherichia coli (Cd 487 

0.5 mM; Cu 1.0 mM and Ni 1.0 mM) (Nies 1999), which indicates its ‘extreme’ tolerance 488 

capacity. The bacterial strain was capable of coping with single and multiple PTEs in the 489 
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order of   Cd<Ni<Cu<As(III)<As(V). This observation conforms with the pattern of tolerance 490 

of a wastewater bacterium Pseudomonas aeruginosa to these PTEs (Biswas et al., 2017).  491 

Further, the bacterial tolerance to multiple PTEs dropped significantly (39.29 to 97.67%) 492 

compared to its exposure to single PTEs. This may be explained by the fact that under 493 

multiple-PTE challenged conditions, the tolerance to an individual PTE was dropped as the 494 

bacterial strain had to face multiple stress inflicted by other four PTEs.  Bacterial 495 

tolerance/resistance to different PTEs differ depending on the toxicity of those PTEs, 496 

different microbial metabolism, and the nature and degree of complexation of the 497 

metal(loid)s with chemical components of the growth media (Chatterjee et al., 2009). The 498 

characteristic of multi-metal(loid) resistance may develop in the bacteria under the selection 499 

pressure emerged from stress of multiple metal(loid)s in the ambience, and later transmitted 500 

in the bacteria either as an evolutionary legacy or an adaptive biological strategy (Nies, 1999; 501 

Mallick et al., 2014).  502 

 503 

4.3. IAA production 504 

The selected strain, Bacillus sp. KUJM2 showed considerable potential to produce IAA 505 

which is recognized as one of the most physiologically active phytohormone under the auxin 506 

category.  IAA producing bacteria such as Bacillus sp. have profound effects on plant growth 507 

in agriculture (Goswami et al., 2014; Biswas et al., 2017; 2018). The IAA production was 508 

increased under single and multiple-PTE conditions in this study (Fig. 2). This observation 509 

finds concordance with other studies demonstrating the IAA production potential of bacterial 510 

strains (e.g., Bacillus spp., Serratia spp., Enterobacter spp. and Klebsiella sp.) in the presence 511 

of Cu, As, Pb, Ni, Cd, Cr and Mn (Mesa et al., 2015; Carlos et al., 2016). The IAA 512 

production by Bacillus sp. KUJM2 was significantly increased up to 2.5, 2.5, 5, 10 and 20 mg 513 

L-1 of Cd, As(III), As(V), Ni and Cu respectively, which indicated that the relative degree of 514 
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toxicity adversely affected the IAA production being the least in case of Cd and As(III) 515 

(Carlos et al., 2016).  Bacterial growth response and metabolic activities vary among PTEs 516 

primarily due to different patterns of bacterial interactions with the PTEs, and secondarily it 517 

may be modulated by the interaction of PTEs with the components of the growth media 518 

which may alter their chemical forms, bioavailability and toxicity (Chatterjee et al., 2009; 519 

Mallick et al., 2014).  520 

 521 

4.4. Seed germination and seedling growth 522 

Treatment with Bacillus sp. KUJM2 increased germination of lentil seeds by 11% with 523 

respect to the control while the relative seed germination was promoted to be registered as 524 

115.24%. The seedling growth was significantly induced by the bacterial manipulation as 525 

reflected from the increased relative root growth (131.13%) and shoot growth (142.96%). 526 

Further germination index (187.41%) bears the testimony of the seedling growth induction by 527 

the bacterial inoculation, and it accounts for the seedling growth as a product of RRG and 528 

RShG. Since the bacterial strain was endowed with the capacities of IAA and GA3 529 

production, the germination rate was enhanced in the presence of the strain (Ma et al., 2015; 530 

Ndeddy Aka and Babalola, 2016). Our previous studies also showed an enhancement of seed 531 

germination in the presence of metal(loid) resistant IAA producing earthworm gut resident 532 

bacterium Bacillus licheniformis and wastewater bacterium P. aeruginosa (Biswas et al., 533 

2017; 2018).  534 

 535 

4.5. Removal of PTEs  536 

Dried biomass of Bacillus sp. KUJM2 removed PTE significantly from both single and 537 

multiple-PTE systems (Figs. 3 and 4). Cd, Cu and Ni removal exhibited a bell-shaped curve, 538 
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with the highest removal at pH 6, followed by gradual decline, which corroborates support 539 

from previous studies (Mohan et al., 2006; Öztürk, 2007; Johncy Rani et al., 2010). For both 540 

the chemical species of As, removal was the highest at pH 7 beyond which the removal 541 

efficiency decreased markedly (Mohan et al., 2007; Giménez et al., 2007). The PTE binding 542 

to the bacterial biomass is a mechanism involving electrostatic interaction between metal ions 543 

and the biomass (Krishnan et al., 2008; Quintelas et al., 2009).  The functional groups such as 544 

carboxyl present on the bacterial cell wall get protonated at low pH (<4) and play a major 545 

role in controlling the binding of PTE ions (Leone et al., 2007; Ren et al., 2015). With 546 

increase in pH values, these groups possibly tended to be deprotonated and attracted the 547 

positively charged PTE ions with gradually increasing intensity, which reached their maxima 548 

at pH 6 -7 for the cationic PTEs. Contrarily, at higher pH, a decreased deprotonation of 549 

bacterial carboxylate and concomitant lowering of available binding reduced the PTE 550 

removal. In such situations, hydroxide precipitation of the PTEs may become an active 551 

mechanism for their removal (Choi et al., 2009; Ren et al., 2015). 552 

The removal of PTE using dried bacterial biomass was most effective at 35 °C. The PTE 553 

removal efficiency increased with increasing temperature was likely due to higher affinity of 554 

binding sites for PTEs or an increase in binding sites on the bacterial biomass (Mohan et al., 555 

2006; Vishan et al., 2017). Above 35 °C, the PTE removal efficiency decreased probably due 556 

to the distortion of active sites of bacterial cells (Vishan et al., 2017). 557 

With increasing concentration of PTEs, the removal efficiency of dried bacterial biomass and 558 

live cells decreased in both single and multiple-PTE systems due to surface saturation 559 

depending on respective initial PTE concentration (Mohan et al., 2006; Quintelas et al., 560 

2009). For an individual PTE, the available active sites became easily occupied at higher 561 

intensity at lower concentrations; the rate gradually declined as it approached towards the 562 

saturation level as experienced at higher concentrations employed in the present study. 563 
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Similar observation was reported by Johncy Rani et al. (2010) on removal of Cu, Cd and Pb 564 

using immobilized and dead bacterial cells of Bacillus sp., Pseudomonas sp. and 565 

Micrococcus sp.  With increasing concentrations, the PTE ions diffuse into the biomass 566 

surface at a slackened rate resulting in decreased removal efficiency (Quintelas et al., 2009).  567 

Although the PTE removal efficiency of live quiescent bacterial cells was slower and lower 568 

than the dried biomass no significant difference (P>0.05) was observed between them at the 569 

end point of experiment. Malkoc et al. (2015) observed slightly higher metal removal 570 

efficiency accomplished by the dead bacterial cells compared to live cells because the former 571 

was mediated through an energy independent passive transport while the latter depended on 572 

an active transport.  573 

Removal of respective PTE mediated by live bacteria or its dried biomass was higher in 574 

single-PTE system than the multiple-PTE system due to lower toxic PTE stress in the former 575 

than the latter. Different interactions such as PTE-PTE in solution, and between PTE and live 576 

or dried bacterial biomass emerge. The net effect of interfacial interactions depends on the 577 

binding mechanisms involved in the sorption at surface sites and reversibility of the process 578 

(Mohan et al., 2006). Different PTE ions present in the system compete for the surface sites 579 

depending on the nature of PTE ions which reflect differential sorption and subsequent 580 

removal of PTEs (Volesky and Holan 1995; Mohan et al., 2006). 581 

 582 

4.6. PTE retention in soil 583 

In both single- and multiple-PTE systems the exogenous introduction of bacterial inoculums 584 

facilitated retention of PTE in the soils higher than their respective controls, whereas shoots 585 

and seeds of the plant grown in the bacteria engineered system contained lower amount of 586 

PTE than their respective controls. It evidently indicates the significant impact of the 587 
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bacterial strain Bacillus sp. KUJM2 on immobilizing PTEs in soil and restricting their 588 

translocation and partitioning along the soil-shoot-seed continuum (Li et al., 2017; Etesami, 589 

2018; Han et al., 2018). The present study also showed that introduction of allochthonous 590 

bacteria helped to increase in soil conductivity significantly in all treatments contaminated 591 

with either single or multiple PTEs, as well as increase soil pH significantly in multiple-PTE 592 

system (Suppl. Table 2), which concomitantly enhanced the immobilization of PTEs in soil 593 

(Bolan et al., 2014; Fauziah et al., 2017).  Several studies have shown that certain bacteria 594 

can decrease translocation of PTEs from soil to plant and thereby reduce their 595 

phytoaccumulation (Ahmadet al., 2014; Etesami, 2018; Han et al., 2018). For example, Cd-596 

resistant Bacillus megaterium H3 reduced Cd accumulation in rice by immobilizing Cd in the 597 

rhizosphere soils (Li et al., 2017) whereas Bacillus thuringiensis X30 increased 598 

immobilization of both Cd and Pb and reduced metal bioavailability, uptake and translocation 599 

in radish, thereby alleviating metal toxicity (Han et al., 2018). Bacteria mediated 600 

immobilization further earns strength from the fact that several Bacillus spp. produce 601 

extracellular polymeric substances which can effectively chelate metal ions (Biswas et al., 602 

2018). The order of PTE concentrations remained in soils of both bacteria engineered and 603 

control sets receiving either single or multiple PTEs were Cu>Ni>As(V)>As(III)>Cd, which 604 

conforms to the same order of the spiking concentration of respective PTE (Li et al., 2017). 605 

Furthermore, the empirical evidence reflects the gradually increasing order of PTE toxicity.  606 

 607 

4.7. Translocation of PTEs 608 

In both the single- and multiple-PTE systems soil-shoot, shoot-seed and soil-seed TF 609 

decreased significantly in the presence of Bacillus sp. KUJM2. Partitioning and translocation 610 

of the PTEs in shoot as well as in seed was higher in multiple-PTE system than the single-611 
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PTE system, which is due to suppression of bacteria mediated processes in general and 612 

immobilization in particular, under multiple PTE stress. The toxic stress induced suppression 613 

of bioaccumulation and immobilization of PTEs can be again supported by the empirical 614 

evidence that the TFs (soil-shoot; shoot-seed and soil-seed) of Cd, the most toxic metal 615 

among the PTEs tested, were highest in all systems. The process of PTE accumulation and 616 

translocation by plants depends on an array of intrinsic and extrinsic factors such as 617 

physicochemical properties of soil, the plant species, rhizospheric microenvironment, 618 

bacterial assemblage, nature and concentration of contaminants (Mallick et al., 2014; Ndeddy 619 

Aka and Babalola, 2016).  620 

 621 

4.8. Phytoaccumulation in plant biomass and phytoremediation  622 

The aerial biomass (shoot + seed) from the treatments without bacterial inoculation on 623 

harvest removed 5.63-6.7, 10.43-11.78, 5.67-6.25 and 6.45-6.77% of the soil As, Cd, Cu and 624 

Ni respectively, under single and multiple-PTE systems, yet leaving potential human health 625 

risk since the meta(lod)s still reached the edible part (seed) of lentil exceeding the permissible 626 

limits (FAO/WHO, 2011). The allochthonous input of the bacterial strain was found to 627 

diminish the build-up of PTEs in the aerial parts of the plant resulting in reduced 628 

phytoextraction (As: 1.65-2.14%; Cd: 2-2.42%; Cu: 1.84-2.11%; Ni: 1.93-2.11%). The 629 

remediation of PTEs at contaminated sites might be related to the presence of higher 630 

proportion of PTE-resistant microbial population in the soil which could also protect the 631 

plants (Rajkumar and Freitas, 2008; Mallick et al., 2014). Such bacteria having IAA 632 

production ability can alleviate the metal induced stress in plants by promoting plant growth, 633 

enhancing nutrients absorption and facilitating tolerance and adaptation to metals (Ma et al., 634 

2011; Sessitsch et al., 2013). In addition to production of growth enhancing and bioprotective 635 
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IAA, allochthonous bacterial inoculation could decrease total respiration, alleviate PTE 636 

induced oxidative stress through upregulation of antioxidant enzymes, and amelioration of 637 

PTE toxicity, leading to increased plant biomass production (Rajkumar et al., 2012; Mesa-638 

Marin et al., 2018). Evidently, the inoculation of the selected bacterial strain Bacillus sp. 639 

KUJM2 into the soil resulted in the increase in shoot biomass up to 36.3% even after 640 

compensating the decrease of biomass inflicted by PTE stress. Similar plant growth 641 

promotion potential of Bacillus subtilis KP717559 was studied by Ndeddy Aka and Babalola 642 

(2016), where it helped Brassica juncea to overcome growth inhibition induced by Cr, Cd, 643 

and Ni. Thus, the PTE immobilizing and plant growth promoting bacteria might be used as 644 

possible candidates for PTE-contaminated land management for agronomic purposes 645 

(Mallick et al., 2014; Han et al., 2018). 646 

Single- or multiple-PTE stress suppress the plant growth and induce plants to raise respiration 647 

and carbon consumption for maintenance purposes leading to compromise in plant growth 648 

(Mesa-Marín et al., 2018), which has been reflected in the decreased production of shoot 649 

biomass and seed production ranging from 33.89-66.11 and 28.57-62.86%, respectively. 650 

These finding are consistent with the relative toxicity of the PTEs which accentuated in the 651 

case of multiple-PTE condition, where all the tested PTEs were spiked and their total 652 

quantum far exceeded than those of the single-PTE sets.  Still significant amounts of PTE 653 

were accumulated in shoot biomass. Rotational cultivation involving lentil could alleviate the 654 

metal(loid)s load through periodic exclusion of PTEs remaining in the non-edible plant parts 655 

to the level that won’t raise any toxicological question. 656 

 657 

4.9. Concentration of PTEs in seed and implication for food safety   658 
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The isolated strain was found capable of not only reducing PTE concentration in different 659 

parts of lentil but also significantly increasing seed production in the presence or absence of 660 

those PTE. Similar observation was reported by Wani et al. (2007; 2008). The inoculation of 661 

contaminated soils with exogenous introduction of allochthonous Bacillus sp. KUJM2 was 662 

proved effective to restrict the build-up of meta(loid)s in the edible (seed) part of the plant 663 

within the permissible limit that ensured food safety from human health point of view. In the 664 

absence of Bacillus sp. KUJM2 the soils contaminated with single or multiple-PTE lentil seed 665 

concentrated PTE at higher levels exceeding the permissible limit, but bacterial manipulation 666 

in soil controlled the partitioning and restricted translocation from soil to shoot and shoot to 667 

seed. This has resulted in reduced concentrations of PTEs in seeds (Table 2), which remain 668 

within the permissible limits (FAO/WHO, 2011), averting any consequent health risk. The 669 

food safety issue is further verified successfully with the tolerable and toxic ranges of the 670 

tested PTEs in agronomic crops as compiled in Kabata-Pendias (2011). For example, the PTE 671 

concentrations  in lentil seed developed under bacteria  inoculated system, As (0.05-0.08 mg 672 

kg-1), Cd (0.01-0.02 mg kg-1), Cu (0.31-0.39 mg kg-1) and Ni (0.22-0.3 mg kg-1) remained far 673 

below the tolerable concentration of respective PTE i.e., 0.2, 0.05-0.5, 5-20 and 1-10 mg kg-1, 674 

as well as the respective toxic concentration ranges of 5-20, 5-30, 20-100 and 10-100 mg kg-
675 

1. Without exogenous bacterial intervention health risk could crop up for the plant and 676 

humans in case of As (Kabata-Pendias 2011) and Cd (EC 2006). 677 

 678 

5. Conclusions 679 

The study showed that the biomass of the multiple metal(loid)-resistant Bacillus sp. KUJM2 680 

had high efficiency in removing PTEs tested, under both mono- and co-contaminated 681 

conditions. The tested bacterium was capable of synthesizing IAA in contaminated 682 
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conditions, and promoted lentil plant growth. It also showed a good potential for 683 

immobilization of PTEs in soil, and modulated their translocation through the soil-root-shoot-684 

seed cascade reducing toxicant levels in different plant parts. The concentrations of PTE in 685 

the edible part of the crop (seed) remained within respective permissible limits (FAO/WHO 686 

2011), averting human health risk. Thus, the bacterial strain was capable of reducing PTE 687 

transfer in the food-chain, which should be tested in field-scale trials in the future. For 688 

practical applications, either the bacterial inoculums may be prepared as suspension or 689 

diluted formulation may be added to the compost or the organic matter.  Alternatively, seeds 690 

may be soaked in that microbial preparation for an hour before sowing. Indigenous soil 691 

microbial populations may impose some constraints to the establishment of the exogenous 692 

effective microorganisms. However, these constraints could be overcome through periodic 693 

recurrent applications at least for first few years. Further assessment and upscaling of the 694 

technology is required for its real life applications. 695 
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Legends to Tables 932 

Table 1. Physiological and biochemical profile of Bacillus sp. KUJM2; here ‘+’ sign 933 

indicates a positive response while ‘–’sign indicates negative response. 934 

Table 2. Concentration (mg kg-1) of PTEs in soil, shoot and seed. The abbreviations C and B 935 

stand for control (without exogenous bacterial inoculation) and bacteria inoculated systems, 936 

respectively. Each value indicates mean of triplicate measurements ± standard deviation. 937 

Significant differences compared to respective control are marked with a, P<0.0001; b, 938 

P<0.001, c, P<0.01; d, P<0.05; as derived from statistical analysis using two-way ANOVA 939 

followed by LSD. 940 

Table 3. Effect of exogenous introduction of bacterial strain, Bacillus sp. KUJM2 on 941 

morphological features (shoot length, shoot dry weight and seed production) of lentil plant 942 

(Lens culinaris) in presence and absence of single and multiple PTEs. The abbreviations C 943 

and B stand for control (without exogenous bacterial inoculation) and bacteria inoculated 944 

systems respectively. Each value indicates mean of triplicate measurements ± standard 945 

deviation. Significant differences compared to respective control are marked with a, 946 

P<0.0001; b, P<0.001, c, P<0.01; d, P<0.05; as derived from statistical analysis using two-947 

way ANOVA followed by LSD. 948 
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Legends to Figures 955 

Fig. 1. Phylogenetic tree based on 16S rRNA gene sequences of Bacillus sp. KUJM2. 956 

Fig. 2. IAA production (µg mL-1) in presence of (a) single-PTE and (b) multiple-PTE system. 957 

Error bars indicate respective standard deviation derived from triplicate measurements. 958 

Significant increases in IAA production compared to that of respective control are marked 959 

with * for P<0.0001; # for P<0.001; ■ for P<0.01; ● for P<0.05 as derived from statistical 960 

analysis using two-way ANOVA followed by LSD. 961 

Fig. 3. PTE removal efficiency (%) of dried biomass of Bacillus sp. KUJM2 from single-PTE 962 

system, (a); (b) and (c) of As(III), (d); (e) and (f) of As(V), (g); (h) and (i) of Cd, (j); (k) and 963 

(l) of Cu and (m); (n) and (o) of Ni. Error bars indicate respective standard deviation derived 964 

from triplicate measurements. 965 

Fig. 4. PTE removal efficiency (%) of dried biomass of Bacillus sp. KUJM2 from multiple-966 

PTE system, (a); (b) and (c) of As, (d); (e) and (f) of Cd, (g); (h) and (i) of Cu and (j); (k) and 967 

(l) of Ni. Error bars indicate respective standard deviation derived from triplicate 968 

measurements. 969 

Fig. 5. Translocation factors (TF) from soil to shoot, shoot to seed, and soil to seed (a) single-970 

PTE system and (b) multiple-PTE system. The abbreviations C and B stand for control 971 

(without exogenous bacterial inoculation) and bacteria inoculated systems respectively. Error 972 

bars indicate respective standard deviation derived from triplicate measurements. Significant 973 

increases in IAA production compared to that of respective control are marked with * for 974 

P<0.0001; # for P<0.001; ■ for P<0.01; ● for P<0.05 as derived from statistical analysis 975 

using two-way ANOVA followed by LSD. 976 
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Table 1 

Characteristics Inference 

Gram character +; Rod; Motile 

Indole production – 

Methyl red + 

Voges-Proskauer – 

Citrate utilization + 

Amylase – 

Catalase + 

Urease – 

Lipase – 

Cellulase + 

ACC deaminase activity 155.37 ±5.58 nmol α-ketobutyrate mg-1 h-1 

Phosphate solubilization – 

Nitrate reduction + 

Gelatin liquefaction – 

IAA production + 

GA3 production 15.12 ±1.34 µg mL-1 

EPS production + 

Triple sugar iron Yellow butt, red slant, no gas, no H2S 

Carbohydrate fermentation Acid Gas 

Glucose + – 

Sucrose + – 

Lactose – – 

Mannitol – – 
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Table 2 

  As(III 
C 

As(III) 
B 

As(V) 
C 

As(V) 
B 

Cd  
C 

Cd  
B 

Cu  
C 

Cu  
B 

Ni  
C 

Ni  
B 

Multiple 
PTE C 

Multiple 
PTE B 

P
T

E
s 

co
nc

en
tr

at
io

n 
in

 s
oi

l (
m

g 
kg

-1
) 

As 33.05 
±0.59 

34.29 
±0.70 

34.38 
±0.87 

35.51 
±0.42 

      34.34 
±0.88 

35.60 
±0.54 

Cd     4.53 
±0.47 

4.80 
±0.21 

    4.56 
±0.23 

5.01 
±0.35 

Cu       176.77 
±7.27 

182.96 
±5.82 

  178.07 
±6.19 

184.04 
±3.45 

Ni         130.33 
±6.05 

135.93 
±5.63 

131.05 
±3.46 

136.93 
±6.52 

P
T

E
s 

co
nc

en
tr

at
io

n 
in

 s
ho

ot
 (

m
g 

kg
-1

) 

As 2.17 
±0.06 

0.65c 

±0.08 
2.04 
±0.14 

0.61d 

±0.09 
      2.41 

±0.14 
0.78b 

±0.05 

Cd     0.54 
±0.10 

0.11 
±0.02 

    0.58 
±0.02 

0.13 
±0.02 

Cu       10.21 
±1.49 

3.37a 

±1.10 
  11.25 

±0.50 
3.83a 

±0.47 

Ni         8.79 
±0.41 

2.67a 

±0.49 
9.17 
±0.61 

2.87a 

±0.59 

P
T

E
s 

co
nc

en
tr

at
io

n 
in

 s
ee

d 
(m

g 
kg

-1
) 

As 0.23 
±0.01 

0.06b 

±0.01 
0.21 
±0.01 

0.05b 

±0.01 
      0.27 

±0.01 
0.08b 

±0.01 

Cd     0.09 
±0.03 

0.01 
±0.003 

    0.12 
±0.02 

0.02d 

±0.004 

Cu       1.13 
±0.14 

0.31a 

±0.04 
  1.25 

±0.09 
0.39a 

±0.04 

Ni         0.88 
±0.03 

0.22a 

±0.04 
0.99 
±0.08 

0.30a 

±0.02 
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Table 3 

 As(III) 
C 

As(III) 
B 

As(V)
C 

As(V) 
B 

Cd  
C 

Cd 
B 

Cu  
C 

Cu 
B 

Ni  
C 

Ni 
B 

Multiple 
PTE C 

Multiple 
PTE B 

Without 
PTE C 
 

Without 
PTE B 

Sh
oo

t 
le

ng
th

 (
cm

) 25.17 
±1.60 

27.21c 

±1.37 
25.83 
±1.66 

27.67c 

±1.30 
20.88 
±1.76 

24.42a 

±1.94 
26.63 
±1.33 

29.13b 

±1.60 
26.17 
±1.48 

28.88a 

±1.88 
16.75 
±1.78 

21.38a 

±1.77 
34.42 
±1.64 
 

35.21 
±1.85 
 

Sh
oo

t 
dr

y 
w

ei
gh

t 
(g

) 0.86 
±0.13 

1.06b 

±0.14 
0.93 
±0.15 

1.10c 

±0.14 
0.61 
±0.09 

0.81b 

±0.15 
0.99 
±0.13 

1.26a 

±0.16 
0.96 
±0.14 

1.24a 

±0.18 
0.51 
±0.08 

0.69b 

±0.09 
1.49 
±0.10 

1.53 
±0.11 

N
o.

 o
f 

Se
ed

s 
pe

r 
pl

an
t 

7.17 
±1.34 

9.17b 

±1.64 
7.67 
±9.83 

9.83b 

±1.85 
4.83 
±1.53 

6.00 
±1.35 

8.33 
±1.07 

10.50b 

±1.57 
8.00 
±1.35 

10.33b 

±1.50 
4.33 
±1.44 

5.17 
±1.53 

11.67 
±1.44 

13.33c 

±1.61 
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Highlights 

 

• Dried/live metal(loid)-resistant Bacillus sp. acts as agent of toxicants’ removal. 

• Synthesizes IAA in contaminated state (single and multiple) and induces plant growth.   
• Modulation of translocation/retention lowered toxicant levels in plant parts. 

• Toxicant level in edible part (seed) lied within permissible limits averting risk. 

• Biomass cuts soil toxic load to harness remedial and agronomic double dividends 


