17 research outputs found
Understanding export diversification: key drivers and policy implications. IMF working paper ;, WP/19/105.
We identify key factors, from large set of potential determinants, that explain the variation in export diversification across countries and over time using Bayesian Model Averaging (BMA), which addresses model uncertainty and ranks factors in order of importance vis-a-vis their explanatory power. Our analysis suggests, in order to diversify, policy makers should prioritize human capital accumulation and reduce barriers to trade. Other policy areas include improving quality of institutions and developing the financial sector. For commodity exporters reducing barriers to trade is the most important driver of diversification, followed by improving education outcomes at the secondary level and financial sector development.Cover; contents; i. Introduction; ii. Related literature; iii. Methodology and data; iv. Stylized facts; v.drivers of export diversification: all countries and emdes; vi. Divers of export diversification: emde commodity exporters versus diversified exporters; vii. Doing business indicators and diversification; viii. Policy implications; ix. Conclusion; references; figures; 1. Diversification and development; 2. Diversification and potential determinants; 3. Diversification and potential determinants; tables; 1. Distribution statistics of diversification index2. Baseline specification, all countries and EMDEs; 3. baseline specification, EMDEs -- Commodity and diversified exporters; 4. Baseline specification with doing business indicator1 online resource (30 pages
Cluster analysis reveals a homogeneous subgroup of PCOS women with metabolic disturbance associated with adverse reproductive outcomes
Abstract.
Background:. Polycystic ovarian syndrome (PCOS) is a heterogeneous and complex reproductive endocrinological disease that could lead to infertility. There were many attempts to classify PCOS but it remains unclear whether there is a specific subgroup of PCOS that is associated with the best or worst reproductive outcomes of assisted reproductive techniques (ART).
Methods:. Infertile PCOS patients who underwent their first cycle of in vitro fertilization (IVF) in West China Second University Hospital, Sichuan University from January 2019 to December 2021 were included. Basic clinical and laboratory information of each individual were extracted. Unsupervised cluster analysis was performed. Controlled ovarian stimulation parameters and reproductive outcomes were collected and compared between the different clusters of PCOS.
Results:. Our analysis clustered women with PCOS into "reproductive", "metabolic", and "balanced" clusters based on nine traits. Reproductive group was characterized by high levels of testosterone (T), sex hormone-binding globulin (SHBG), follicular stimulation hormone (FSH), luteinizing hormone (LH), and anti-Müllerian hormone (AMH). Metabolic group was characterized by high levels of body mass index (BMI), fasting insulin, and fasting glucose. Balanced group was characterized by low levels of the aforementioned reproductive and metabolic parameters, except for SHBG. Compared with PCOS patients in reproductive and balanced clusters, those in metabolic cluster had lower rates of good quality day 3 embryo and blastocyst formation. Moreover, PCOS patients in the reproductive cluster had greater fresh embryo transfer (ET) cancelation rate and clinical pregnancy rate after fresh ET than metabolic cluster (odds ratio [OR] = 3.37, 95% confidence interval [CI]: 1.77–6.44, and OR = 6.19, 95% CI: 1.58–24.24, respectively). And compared with PCOS of metabolic cluster, PCOS of balanced cluster also had higher chance for fresh ET cancelation (OR = 2.83, 95% CI: 1.26–6.35).
Conclusion:. Our study suggested that PCOS patients in metabolic cluster may be associated with adverse reproductive outcomes and might need individualized treatment and careful monitoring before and during ART
Are medical record front page data suitable for risk adjustment in hospital performance measurement? Development and validation of a risk model of in-hospital mortality after acute myocardial infarction
Objectives To develop a model of in-hospital mortality using medical record front page (MRFP) data and assess its validity in case-mix standardisation by comparison with a model developed using the complete medical record data.Design A nationally representative retrospective study.Setting Representative hospitals in China, covering 161 hospitals in modelling cohort and 156 hospitals in validation cohort.Participants Representative patients admitted for acute myocardial infarction. 8370 patients in modelling cohort and 9704 patients in validation cohort.Primary outcome measures In-hospital mortality, which was defined explicitly as death that occurred during hospitalisation, and the hospital-level risk standardised mortality rate (RSMR).Results A total of 14 variables were included in the model predicting in-hospital mortality based on MRFP data, with the area under receiver operating characteristic curve of 0.78 among modelling cohort and 0.79 among validation cohort. The median of absolute difference between the hospital RSMR predicted by hierarchical generalised linear models established based on MRFP data and complete medical record data, which was built as ‘reference model’, was 0.08% (10th and 90th percentiles: −1.8% and 1.6%). In the regression model comparing the RSMR between two models, the slope and intercept of the regression equation is 0.90 and 0.007 in modelling cohort, while 0.85 and 0.010 in validation cohort, which indicated that the evaluation capability from two models were very similar.Conclusions The models based on MRFP data showed good discrimination and calibration capability, as well as similar risk prediction effect in comparison with the model based on complete medical record data, which proved that MRFP data could be suitable for risk adjustment in hospital performance measurement
CEPC Technical Design Report -- Accelerator
International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
CEPC Technical Design Report -- Accelerator
International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
CEPC Technical Design Report - Accelerator
The Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s