289 research outputs found

    B meson wave function from the BγlνB\to\gamma l\nu decay

    Full text link
    We show that the leading-power BB meson wave function can be extracted reliably from the photon energy spectrum of the BγlνB\to\gamma l\nu decay up to O(1/mb2)O(1/m_b^2) and O(αs2)O(\alpha_s^2) uncertainty, mbm_b being the bb quark mass and αs\alpha_s the strong coupling constant. The O(1/mb)O(1/m_b) corrections from heavy-quark expansion can be absorbed into a redefined leading-power BB meson wave function. The two-parton O(1/mb)O(1/m_b) corrections cancel exactly, and the three-parton BB meson wave functions turn out to contribute at O(1/mb2)O(1/m_b^2). The constructive long-distance contribution through the BVγB\to V\to\gamma transition, VV being a vector meson, almost cancels the destructive O(αs)O(\alpha_s) radiative correction. Using models of the leading-power BB meson wave function available in the literature, we obtain the photon energy spectrum in the perturbative QCD framework, which is then compared with those from other approaches.Comment: 11 pages, 5 figures with minor correction

    Distributed Model-to-Model Transformation with ATL on MapReduce

    Get PDF
    International audienceEfficient processing of very large models is a key requirement for the adoption of Model-Driven Engineering (MDE) in some industrial contexts. One of the central operations in MDE is rule-based model transformation (MT). It is used to specify manipulation operations over structured data coming in the form of model graphs. However, being based on com-putationally expensive operations like subgraph isomorphism, MT tools are facing issues on both memory occupancy and execution time while dealing with the increasing model size and complexity. One way to overcome these issues is to exploit the wide availability of distributed clusters in the Cloud for the distributed execution of MT. In this paper, we propose an approach to automatically distribute the execution of model transformations written in a popular MT language, ATL, on top of a well-known distributed programming model, MapReduce. We show how the execution semantics of ATL can be aligned with the MapReduce computation model. We describe the extensions to the ATL transformation engine to enable distribution, and we experimentally demonstrate the scalability of this solution in a reverse-engineering scenario

    Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts

    Get PDF
    Aims: Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results: FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion: In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia

    From proteomics to discovery of first-in-class ST2 inhibitors active in vivo

    Get PDF
    Soluble cytokine receptors function as decoy receptors to attenuate cytokine-mediated signaling and modulate downstream cellular responses. Dysregulated overproduction of soluble receptors can be pathological, such as soluble ST2 (sST2), a prognostic biomarker in cardiovascular diseases, ulcerative colitis, and graft-versus-host disease (GVHD). Although intervention using an ST2 antibody improves survival in murine GVHD models, sST2 is a challenging target for drug development because it binds to IL-33 via an extensive interaction interface. Here, we report the discovery of small-molecule ST2 inhibitors through a combination of high-throughput screening and computational analysis. After in vitro and in vivo toxicity assessment, 3 compounds were selected for evaluation in 2 experimental GVHD models. We show that the most effective compound, iST2-1, reduces plasma sST2 levels, alleviates disease symptoms, improves survival, and maintains graft-versus-leukemia activity. Our data suggest that iST2-1 warrants further optimization to develop treatment for inflammatory diseases mediated by sST2

    Multidisciplinary approach to diagnosis and management of osteosarcoma – a review of the St Vincent's Hospital experience

    Get PDF
    BACKGROUND: Osteosarcoma is the most common primary malignant bone tumour in children and young adults. Despite advances in the diagnosis and management of osteosarcoma, there have been few recent studies describing the experiences of tertiary referral centres. This paper aims to describe and discuss the clinical features, pre-operative work-up, management and outcomes of these patients at St Vincent's Hospital (Melbourne, Australia). METHODS: Retrospective study of fifty-nine consecutive patients managed for osteosarcoma at St Vincent's Hospital between 1995 and 2005. RESULTS: Median age at diagnosis was 21 (range, 11–84) years. Gender distribution was similar, with thirty-one male and twenty-eight female patients. Twenty-five patients had osteosarcoma in the femur, eleven each were located in the humerus and tibia, six were identified in the pelvis, and one each in the clavicle, maxilla, fibula, sacrum, ulna and radius. Pre-operative tissue diagnosis of osteosarcoma was obtained through computed tomography-guided percutaneous biopsy in over ninety percent of patients. Following initial therapy, over fifty percent of patients remained relapse-free during the follow-up period, with twelve percent and twenty-seven percent of patients documented as having local and distant disease recurrence, respectively. Of patients with recurrent disease, sixty-two percent remained disease-free following subsequent surgical intervention (most commonly, pulmonary metastatectomy). CONCLUSION: Patient outcomes can be optimised through a multidisciplinary approach in a tertiary referral centre. At St Vincent's Hospital, survival and relapse rates of patients managed for osteosarcoma compare favourably with the published literature

    The similarity of class II HLA genotypes defines patterns of autoreactivity in idiopathic bone marrow failure disorders

    Get PDF
    Abstract Idiopathic aplastic anemia (IAA) is a rare autoimmune bone marrow failure (BMF) disorder initiated by a human leukocyte antigen (HLA)-restricted T-cell response to unknown antigens. As in other autoimmune disorders, the predilection for certain HLA profiles seems to represent an etiologic factor; however, the structure-function patterns involved in the self-presentation in this disease remain unclear. Herein, we analyzed the molecular landscape of HLA complexes of a cohort of 300 IAA patients and almost 3000 healthy and disease controls by deeply dissecting their genotypic configurations, functional divergence, self-antigen binding capabilities, and T-cell receptor (TCR) repertoire specificities. Specifically, analysis of the evolutionary divergence of HLA genotypes (HED) showed that IAA patients carried class II HLA molecules whose antigen-binding sites were characterized by a high level of structural homology, only partially explained by specific risk allele profiles. This pattern implies reduced HLA binding capabilities, confirmed by binding analysis of hematopoietic stem cell (HSC)-derived self-peptides. IAA phenotype was associated with the enrichment in a few amino acids at specific positions within the peptide-binding groove of DRB1 molecules, affecting the interface HLA-antigen-TCR β and potentially constituting the basis of T-cell dysfunction and autoreactivity. When analyzing associations with clinical outcomes, low HED was associated with risk of malignant progression and worse survival, underlying reduced tumor surveillance in clearing potential neoantigens derived from mechanisms of clonal hematopoiesis. Our data shed light on the immunogenetic risk associated with IAA etiology and clonal evolution and on general pathophysiological mechanisms potentially involved in other autoimmune disorders.Peer reviewe

    Studies on the virome of the entomopathogenic fungus Beauveria bassiana reveal novel dsRNA elements and mild hypervirulence.

    Get PDF
    © 2017 Kotta-Loizou, Coutts. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Kotta-Loizou I, Coutts RHA (2017) 'Studies on the Virome of the Entomopathogenic Fungus Beauveria bassiana Reveal Novel dsRNA Elements and Mild Hypervirulence', PLoS Pathogens, 13(1): e1006183. doi:10.1371/journal.ppat.1006183The entomopathogenic fungus Beauveria bassiana has a wide host range and is used as a biocontrol agent against arthropod pests. Mycoviruses have been described in phytopathogenic fungi while in entomopathogenic fungi their presence has been reported only rarely. Here we show that 21.3% of a collection of B. bassiana isolates sourced from worldwide locations, harbor dsRNA elements. Molecular characterization of these elements revealed the prevalence of mycoviruses belonging to the Partitiviridae and Totiviridae families, the smallest reported virus to date, belonging to the family Narnaviridae, and viruses unassigned to a family or genus. Of particular importance is the discovery of members of a newly proposed family Polymycoviridae in B. bassiana. Polymycoviruses, previously designated as tetramycoviruses, consist of four non-conventionally encapsidated capped dsRNAs. The presence of additional non-homologous genomic segments in B. bassiana polymycoviruses and other fungi illustrates the unprecedented dynamic nature of the viral genome. Finally, a comparison of virus-free and virus-infected isogenic lines derived from an exemplar B. bassiana isolate revealed a mild hypervirulent effect of mycoviruses on the growth of their host isolate and on its pathogenicity against the greater wax moth Galleria mellonella, highlighting for the first time the potential of mycoviruses as enhancers of biocontrol agents.Peer reviewedFinal Published versio

    Release of sICAM-1 in Oocytes and In Vitro Fertilized Human Embryos

    Get PDF
    Background: During the last years, several studies have reported the significant relationship between the production of soluble HLA-G molecules (sHLA-G) by 48–72 hours early embryos and an increased implantation rate in IVF protocols. As consequence, the detection of HLA-G modulation was suggested as a marker to identify the best embryos to be transferred. On the opposite, no suitable markers are available for the oocyte selection. Methodology/Principal Findings: The major finding of the present paper is that the release of ICAM-1 might be predictive of oocyte maturation. The results obtained are confirmed using three independent methodologies, such as ELISA, Bio-Plex assay and Western blotting. The sICAM-1 release is very high in immature oocytes, decrease in mature oocytes and become even lower in in vitro fertilized embryos. No significant differences were observed in the levels of sICAM-1 release between immature oocytes with different morphological characteristics. On the contrary, when the mature oocytes were subdivided accordingly to morphological criteria, the mean sICAM-I levels in grade 1 oocytes were significantly decreased when compared to grade 2 and 3 oocytes. Conclusions/Significance: The reduction of the number of fertilized oocytes and transferred embryos represents the main target of assisted reproductive medicine. We propose sICAM-1 as a biochemical marker for oocyte maturation and grading

    17q21 variant increases the risk of exacerbations in asthmatic children despite inhaled corticosteroids use

    Get PDF
    _To the Editor,_ Approximately 25% of the asthmatic children suffer from uncontrolled asthma despite regular use of inhaled corticosteroids (ICS). Variation within the 17q21 locus is the strongest genetic determinant for childhood‐onset asthma. Recently, the influence of this locus on treatment outcomes has been shown in several studies. The Pharmacogenomics in Childhood Asthma (PiCA) consortium is a multiethnic consortium that brings together data from ≥14 000 asthmatic children/young adults from 12 different countries to study the pharmacogenomics of uncontrolled asthma despite treatment. In 14 PiCA populations (with over 4000 asthmatic patients), we studied the association between variation in the 17q21 locus, and asthma exacerbations despite ICS use. We specifically focused on rs7216389, a single nucleotide polymorphism (SNP) in the 17q21 locus strongly associated with childhood asthma and initially identified by Moffatt et al. [...

    Pharmacogenomic associations of adverse drug reactions in asthma: systematic review and research prioritisation

    Get PDF
    A systematic review of pharmacogenomic studies capturing adverse drug reactions (ADRs) related to asthma medications was undertaken, and a survey of Pharmacogenomics in Childhood Asthma (PiCA) consortia members was conducted. Studies were eligible if genetic polymorphisms were compared with suspected ADR(s) in a patient with asthma, as either a primary or secondary outcome. Five studies met the inclusion criteria. The ADRs and polymorphisms identified were change in lung function tests (rs1042713), adrenal suppression (rs591118), and decreased bone mineral density (rs6461639) and accretion (rs9896933, rs2074439). Two of these polymorphisms were replicated within the paper, but none had external replication. Priorities from PiCA consortia members (representing 15 institution in eight countries) for future studies were tachycardia (SABA/LABA), adrenal suppression/crisis and growth suppression (corticosteroids), sleep/behaviour disturbances (leukotriene receptor antagonists), and nausea and vomiting (theophylline). Future pharmacogenomic studies in asthma should collect relevant ADR data as well as markers of efficacy
    corecore