1,437 research outputs found

    The Global Earthquake Model Physical Vulnerability Database

    Get PDF
    There are almost 50 years of research on fragility and vulnerability assessment, both key elements in seismic risk or loss estimation. This paper presents the online database of physical vulnerability models that has been created as part of the Global Earthquake Model (GEM) initiative. The database comprises fragility and vulnerability curves, damage-to-loss models, and capacity curves for various types of structures. The attributes that have been selected to characterize each function, the constraints of setting up a usable database, the challenges in collecting these models, and the current trends in the development of vulnerability models are discussed in this study. The current collection of models leverages upon the outputs of several initiatives, such as GEM’s Global Vulnerability Consortium and the European Syner-G project. This database is publicly available through the web-based GEM OpenQuake-platform http://doi.org/10.13117/GEM.DATASET.VULN.WEB-V1.

    Collocation analysis for UMLS knowledge-based word sense disambiguation

    Get PDF
    BACKGROUND: The effectiveness of knowledge-based word sense disambiguation (WSD) approaches depends in part on the information available in the reference knowledge resource. Off the shelf, these resources are not optimized for WSD and might lack terms to model the context properly. In addition, they might include noisy terms which contribute to false positives in the disambiguation results. METHODS: We analyzed some collocation types which could improve the performance of knowledge-based disambiguation methods. Collocations are obtained by extracting candidate collocations from MEDLINE and then assigning them to one of the senses of an ambiguous word. We performed this assignment either using semantic group profiles or a knowledge-based disambiguation method. In addition to collocations, we used second-order features from a previously implemented approach.Specifically, we measured the effect of these collocations in two knowledge-based WSD methods. The first method, AEC, uses the knowledge from the UMLS to collect examples from MEDLINE which are used to train a Naïve Bayes approach. The second method, MRD, builds a profile for each candidate sense based on the UMLS and compares the profile to the context of the ambiguous word.We have used two WSD test sets which contain disambiguation cases which are mapped to UMLS concepts. The first one, the NLM WSD set, was developed manually by several domain experts and contains words with high frequency occurrence in MEDLINE. The second one, the MSH WSD set, was developed automatically using the MeSH indexing in MEDLINE. It contains a larger set of words and covers a larger number of UMLS semantic types. RESULTS: The results indicate an improvement after the use of collocations, although the approaches have different performance depending on the data set. In the NLM WSD set, the improvement is larger for the MRD disambiguation method using second-order features. Assignment of collocations to a candidate sense based on UMLS semantic group profiles is more effective in the AEC method.In the MSH WSD set, the increment in performance is modest for all the methods. Collocations combined with the MRD disambiguation method have the best performance. The MRD disambiguation method and second-order features provide an insignificant change in performance. The AEC disambiguation method gives a modest improvement in performance. Assignment of collocations to a candidate sense based on knowledge-based methods has better performance. CONCLUSIONS: Collocations improve the performance of knowledge-based disambiguation methods, although results vary depending on the test set and method used. Generally, the AEC method is sensitive to query drift. Using AEC, just a few selected terms provide a large improvement in disambiguation performance. The MRD method handles noisy terms better but requires a larger set of terms to improve performance

    Dry period plane of energy: Effects on glucose tolerance in transition dairy cows

    Get PDF
    Overfeeding energy in the dry period can affect glucose metabolism and the energy balance of transition dairy cows with potential detrimental effects on the ability to successfully adapt to early lactation. The objectives of this study were to investigate the effect of different dry cow feeding strategies on glucose tolerance and on resting concentrations of blood glucose, glucagon, insulin, nonesterified fatty acids (NEFA), and β-hydroxybutyrate (BHB) in the peripartum period. Cows entering second or greater lactation were enrolled at dry-off (57 d before expected parturition) into 1 of 3 treatment groups following a randomized block design: cows that received a total mixed ration (TMR) formulated to meet but not exceed energy requirements during the dry period (n = 28, controlled energy); cows that received a TMR supplying approximately 150% of energy requirements during the dry period (n = 28, high energy); and cows that were fed the same diet as the controlled energy group for the first 28 d, after which the TMR was formulated to supply approximately 125% of energy requirements until calving (n = 28, intermediate energy). Intravenous glucose tolerance tests (IVGTT) with rapid administration of 0.25 g of glucose/kg of body weight were performed 28 and 10 d before expected parturition, as well as at 4 and 21 d after calving. Area under the curve for insulin and glucose, maximal concentration and time to half-maximal concentration of insulin and glucose, and clearance rates were calculated. Insulin resistance (IR) indices were calculated from baseline samples obtained during IVGTT and Spearman rank correlations determined between IVGTT parameters and IR indices. Treatment did not affect IVGTT parameters at any of the 4 time points. Correlation between IR indices and IVGTT parameters was generally poor. Overfeeding cows energy in excess of predicted requirements by approximately 50% during the entire dry period resulted in decreased postpartum basal plasma glucose and insulin, as well as increased glucagon, BHB, and NEFA concentrations after calving compared with cows fed a controlled energy diet during the dry period. In conclusion, overfeeding energy during the entire dry period or close-up period alone did not affect glucose tolerance as assessed by IVGTT but energy uptake during the dry period was associated with changes in peripartal resting concentrations of glucose, as well as postpartum insulin, glucagon, NEFA, and BHB concentrations

    Molecular Hydrogen and Global Star Formation Relations in Galaxies

    Full text link
    (ABRIDGED) We use hydrodynamical simulations of disk galaxies to study relations between star formation and properties of the molecular interstellar medium (ISM). We implement a model for the ISM that includes low-temperature (T<10^4K) cooling, directly ties the star formation rate to the molecular gas density, and accounts for the destruction of H2 by an interstellar radiation field from young stars. We demonstrate that the ISM and star formation model simultaneously produces a spatially-resolved molecular-gas surface density Schmidt-Kennicutt relation of the form Sigma_SFR \propto Sigma_Hmol^n_mol with n_mol~1.4 independent of galaxy mass, and a total gas surface density -- star formation rate relation Sigma_SFR \propto Sigma_gas^n_tot with a power-law index that steepens from n_tot~2 for large galaxies to n_tot>~4 for small dwarf galaxies. We show that deviations from the disk-averaged Sigma_SFR \propto Sigma_gas^1.4 correlation determined by Kennicutt (1998) owe primarily to spatial trends in the molecular fraction f_H2 and may explain observed deviations from the global Schmidt-Kennicutt relation.Comment: Version accepted by ApJ, high-res version available at http://kicp.uchicago.edu/~brant/astro-ph/molecular_ism/rk2007.pd

    Constraining Antimatter Domains in the Early Universe with Big Bang Nucleosynthesis

    Full text link
    We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit comes from underproduction of He-4. For larger domains, the limit comes from He-3 overproduction. Most of the He-3 from antiproton-helium annihilation is annihilated also. The main source of He-3 is photodisintegration of He-4 by the electromagnetic cascades initiated by the annihilation.Comment: 4 pages, 2 figures, revtex, (slightly shortened

    Photon Physics in Heavy Ion Collisions at the LHC

    Full text link
    Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One figure added in chapter 5 (comparison with PHENIX data). Some figures and correponding text corrected in chapter 6 (off-chemical equilibrium thermal photon rates). Some figures modified in chapter 7 (off-chemical equilibrium photon rates) and comparison with PHENIX data adde

    Scalar-Tensor Cosmological Models

    Get PDF
    We analyze the qualitative behaviors of scalar-tensor cosmologies with an arbitrary monotonic ω(Φ)\omega(\Phi) function. In particular, we are interested on scalar-tensor theories distinguishable at early epochs from General Relativity (GR) but leading to predictions compatible with solar-system experiments. After extending the method developed by Lorentz-Petzold and Barrow, we establish the conditions required for convergence towards GR at tt\rightarrow\infty. Then, we obtain all the asymptotic analytical solutions at early times which are possible in the framework of these theories. The subsequent qualitative evolution, from these asymptotic solutions until their later convergence towards GR, has been then analyzed by means of numerical computations. From this analysis, we have been able to establish a classification of the different qualitative behaviors of scalar-tensor cosmological models with an arbitrary monotonic ω(Φ)\omega(\Phi) function.Comment: uuencoded compressed postscript file containing 41 pages, with 9 figures, accepted for publication in Physical Review

    Origin and evolution of halo bias in linear and non-linear regimes

    Full text link
    We present results from a study of bias and its evolution for galaxy-size halos in a large, high-resolution simulation of a LCDM model. We consider the evolution of bias estimated using two-point correlation function (b_xi), power spectrum (b_P), and a direct correlation of smoothed halo and matter overdensity fields (b_d). We present accurate estimates of the evolution of the matter power spectrum probed deep into the stable clustering regime (k~[0.1-200]h/Mpc at z=0). The halo power spectrum evolves much slower than the power spectrum of matter and has a different shape which indicates that the bias is time- and scale-dependent. At z=0, the halo power spectrum is anti-biased with respect to the matter power spectrum at wavenumbers k~[0.15-30]h/Mpc, and provides an excellent match to the power spectrum of the APM galaxies at all probed k. In particular, it nicely matches the inflection observed in the APM power spectrum at k~0.15h/Mpc. We complement the power spectrum analysis with a direct estimate of bias using smoothed halo and matter overdensity fields and show that the evolution observed in the simulation in linear and mildly non-linear regimes can be well described by the analytical model of Mo & White (1996), if the distinction between formation redshift of halos and observation epoch is introduced into the model. We present arguments and evidence that at higher overdensities, the evolution of bias is significantly affected by dynamical friction and tidal stripping operating on the satellite halos in high-density regions of clusters and groups; we attribute the strong anti-bias observed in the halo correlation function and power spectrum to these effects. (Abridged)Comment: submitted to the Astrophys.Journal; 19 pages, 9 figures LaTeX (uses emulateapj.sty

    The MUSIC of CLASH: predictions on the concentration-mass relation

    Get PDF
    We present the results of a numerical study based on the analysis of the MUSIC-2 simulations, aimed at estimating the expected concentration-mass relation for the CLASH cluster sample. We study nearly 1400 halos simulated at high spatial and mass resolution, which were projected along many lines-of-sight each. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White, the generalised Navarro-Frenk-White, and the Einasto density profiles. We derive concentrations and masses from these fits and investigate their distributions as a function of redshift and halo relaxation. We use the X-ray image simulator X-MAS to produce simulated Chandra observations of the halos and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos which resemble the X-ray morphology of the CLASH clusters is composed mainly by relaxed halos, but it also contains a significant fraction of un-relaxed systems. For such a sample we measure an average 2D concentration which is ~11% higher than found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in 3D for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61. Simulated halos with X-ray morphologies similar to those of the CLASH clusters are affected by a modest orientation bias.Comment: 21 pages, 16 figures, 3 tables, submitted to Ap
    corecore