3,445 research outputs found

    Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra

    Full text link
    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure

    Ginsenoside Rd and ischemic stroke; a short review of literatures

    Get PDF
    Panax ginseng is a well-known economic medical plant which is broadly used in Chinese traditional medicine. This species contains unique class of natural products, namely ginsenosides. Recent clinical and experimental studies lined a plethora of evidences up for the promising role of ginsenosides on different diseases including neurodegenerative, cardiovascular, certain types of cancer, etc. Nowadays, much attention has been paid to ginsenoside Rd as neuroprotective agent to attenuate ischemic stroke damages. Several evidences reported that ginsenoside Rd ameliorate ischemic stroke-induced damages through the suppression of oxidative stress and inflammation. Ginsenoside Rd can prolong neural cells survival through up-regulation of endogenous antioxidant system, PI3K/AKT and ERK1/2 pathways, preservation of mitochondrial membrane potential, suppression of the nuclear factor (NF)-Kappa B, transient receptor potential melastatin, acid sensing ion channels 1a, Poly (ADP-ribose) polymerase-1, protein tyrosine kinase activation, as well as decreasing of cytochrome-C releasing and apoptosis-inducing factor. In the current work, we review the available reports on the promising role of ginsenoside Rd on ischemic stroke. We also discuss about its chemistry, source and molecular mechanism underlying this effects

    Structural Basis of Competitive Recognition of p53 and MDM2 by HAUSP/USP7: Implications for the Regulation of the p53–MDM2 Pathway

    Get PDF
    Herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7), a deubiquitylating enzyme of the ubiquitin-specific processing protease family, specifically deubiquitylates both p53 and MDM2, hence playing an important yet enigmatic role in the p53–MDM2 pathway. Here we demonstrate that both p53 and MDM2 specifically recognize the N-terminal tumor necrosis factor–receptor associated factor (TRAF)–like domain of HAUSP in a mutually exclusive manner. HAUSP preferentially forms a stable HAUSP–MDM2 complex even in the presence of excess p53. The HAUSP-binding elements were mapped to a peptide fragment in the carboxy-terminus of p53 and to a short-peptide region preceding the acidic domain of MDM2. The crystal structures of the HAUSP TRAF-like domain in complex with p53 and MDM2 peptides, determined at 2.3-Å and 1.7-Å resolutions, respectively, reveal that the MDM2 peptide recognizes the same surface groove in HAUSP as that recognized by p53 but mediates more extensive interactions. Structural comparison led to the identification of a consensus peptide-recognition sequence by HAUSP. These results, together with the structure of a combined substrate-binding-and-deubiquitylation domain of HAUSP, provide important insights into regulation of the p53–MDM2 pathway by HAUSP

    Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.

    Get PDF
    Microfluidic technologies have wide-ranging applications in chemical analysis systems, drug delivery platforms, and artificial vascular networks. This latter area is particularly relevant to 3D cell cultures, engineered tissues, and artificial organs, where volumetric capabilities in fluid distribution are essential. Existing schemes for fabricating 3D microfluidic structures are constrained in realizing desired layout designs, producing physiologically relevant microvascular structures, and/or integrating active electronic/optoelectronic/microelectromechanical components for sensing and actuation. This paper presents a guided assembly approach that bypasses these limitations to yield complex 3D microvascular structures from 2D precursors that exploit the full sophistication of 2D fabrication methods. The capabilities extend to feature sizes <5 μm, in extended arrays and with various embedded sensors and actuators, across wide ranges of overall dimensions, in a parallel, high-throughput process. Examples include 3D microvascular networks with sophisticated layouts, deterministically designed and constructed to expand the geometries and operating features of artificial vascular networks

    Delta neutrophil index as an early marker of disease severity in critically ill patients with sepsis

    Get PDF
    BACKGROUND: The immature granulocyte count has been reported to be a marker of infection and sepsis. The difference in leukocyte subfractions (delta neutrophil index, DNI) in ADVIA 2120 reflects the fraction of circulating immature granulocytes in the blood. This study evaluated the clinical utility of DNI as a severity and prediction marker in critically ill patients with sepsis. METHODS: One hundred and three patients admitted to the medical intensive care unit with sepsis were studied. DNI (the difference in leukocyte subfractions identified by myeloperoxidase and nuclear lobularity channels) was determined using a specific blood cell analyzer. RESULTS: Forty four patients (42.7%) were diagnosed with severe sepsis/septic shock. Overt disseminated intravascular coagulation (DIC) occurred in 40 (38.8%). DNI was significantly higher in patients with severe sepsis/septic shock and overt DIC than in patients without (p 6.5% was a better indicator of severe sepsis/septic shock than C-reactive protein, lactate, white blood cell count, and absolute neutrophil count (sensitivity, 81.3%; specificity, 91.0%; positive predictive value, 88.6%; and negative predictive value, 84.7%). In 36 (82%) of the 44 patients with severe sepsis/septic shock, DNI values were already elevated up to 12 hours before the onset of organ/circulatory failure. CONCLUSIONS: DNI may be used as a marker of disease severity in critically ill patients with sepsis. High levels of DNI may help to identify patients with an impending risk of developing severe sepsis/septic shock.ope

    Anapole nanolasers for mode-locking and ultrafast pulse generation

    Get PDF
    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry

    Comparative Transcriptional Profiling and Preliminary Study on Heterosis Mechanism of Super-Hybrid Rice

    Get PDF
    Heterosis is a biological phenomenon whereby the offspring from two parents show improved and superior performance than either inbred parental lines. Hybrid rice is one of the most successful apotheoses in crops utilizing heterosis. Transcriptional profiling of F1 super-hybrid rice Liangyou-2186 and its parents by serial analysis of gene expression (SAGE) revealed 1183 differentially expressed genes (DGs), among which DGs were found significantly enriched in pathways such as photosynthesis and carbon-fixation, and most of the key genes involved in the carbon-fixation pathway exhibited up-regulated expression in F1 hybrid rice. Moreover, increased catabolic activity of corresponding enzymes and photosynthetic efficiency were also detected, which combined to indicate that carbon fixation is enhanced in F1 hybrid, and might probably be associated with the yield vigor and heterosis in super-hybrid rice. By correlating DGs with yield-related quantitative trait loci (QTL), a potential relationship between differential gene expression and phenotypic changes was also found. In addition, a regulatory network involving circadian-rhythms and light signaling pathways was also found, as previously reported in Arabidopsis, which suggest that such a network might also be related with heterosis in hybrid rice. Altogether, the present study provides another view for understanding the molecular mechanism underlying heterosis in rice

    Modular construction of fluoroarenes from a new difluorinated building block via cross-coupling/electrocyclisation/ dehydrofluorination reactions

    Get PDF
    Palladium-catalysed coupling reactions based on a novel and easy-to-synthesise difluorinated organotrifluoroborate were used to assemble precursors to 6π-electrocyclisations of three different types. Electrocyclisations took place at temperatures between 90 and 240 oC, depending on the central component of the π-system; non-aromatic trienes were most reactive, but even systems which required the temporary dearomatisation of two arenyl sub-units underwent electrocyclisation, albeit at elevated temperatures. Photochemical conditions were effective for these more demanding reactions. The package of methods delivered a structurally-diverse set of fluorinated arenes, spanning a 20 kcal mol-1 range of reactivity, by a flexible route
    corecore