138 research outputs found

    Application of Bayesian regression with singular value decomposition method in association studies for sequence data

    Get PDF
    Genetic association studies usually involve a large number of single-nucleotide polymorphisms (SNPs) (k) and a relative small sample size (n), which produces the situation that k is much greater than n. Because conventional statistical approaches are unable to deal with multiple SNPs simultaneously when k is much greater than n, single-SNP association studies have been used to identify genes involved in a disease’s pathophysiology, which causes a multiple testing problem. To evaluate the contribution of multiple SNPs simultaneously to disease traits when k is much greater than n, we developed the Bayesian regression with singular value decomposition (BRSVD) method. The method reduces the dimension of the design matrix from k to n by applying singular value decomposition to the design matrix. We evaluated the model using a Markov chain Monte Carlo simulation with Gibbs sampler constructed from the posterior densities driven by conjugate prior densities. Permutation was incorporated to generate empirical p-values. We applied the BRSVD method to the sequence data provided by Genetic Analysis Workshop 17 and found that the BRSVD method is a practical method that can be used to analyze sequence data in comparison to the single-SNP association test and the penalized regression method

    Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome.

    Get PDF
    RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.ERC, BBSR

    Voltage scanning and technical upgrades at the Collinear Resonance Ionization Spectroscopy experiment

    Full text link
    To optimize the performance of the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at CERN-ISOLDE, technical upgrades are continuously introduced, aiming to enhance its sensitivity, precision, stability, and efficiency. Recently, a voltage-scanning setup was developed and commissioned at CRIS, which improved the scanning speed by a factor of three as compared to the current laser-frequency scanning approach. This leads to faster measurements of the hyperfine structure for systems with high yields (more than a few thousand ions per second). Additionally, several beamline sections have been redesigned and manufactured, including a new field-ionization unit, a sharper electrostatic bend, and improved ion optics. The beamline upgrades are expected to yield an improvement of at least a factor of 5 in the signal-to-noise ratio by suppressing the non-resonant laser ions and providing time-of-flight separation between the resonant ions and the collisional background. Overall, the presented developments will further improve the selectivity, sensitivity, and efficiency of the CRIS technique.Comment: 10 pages. Under review at NIM B as part of the proceedings of EMIS 2022 at RAON, South Kore

    A Computational Method Based on the Integration of Heterogeneous Networks for Predicting Disease-Gene Associations

    Get PDF
    The identification of disease-causing genes is a fundamental challenge in human health and of great importance in improving medical care, and provides a better understanding of gene functions. Recent computational approaches based on the interactions among human proteins and disease similarities have shown their power in tackling the issue. In this paper, a novel systematic and global method that integrates two heterogeneous networks for prioritizing candidate disease-causing genes is provided, based on the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein interactions. In this method, the association score function between a query disease and a candidate gene is defined as the weighted sum of all the association scores between similar diseases and neighbouring genes. Moreover, the topological correlation of these two heterogeneous networks can be incorporated into the definition of the score function, and finally an iterative algorithm is designed for this issue. This method was tested with 10-fold cross-validation on all 1,126 diseases that have at least a known causal gene, and it ranked the correct gene as one of the top ten in 622 of all the 1,428 cases, significantly outperforming a state-of-the-art method called PRINCE. The results brought about by this method were applied to study three multi-factorial disorders: breast cancer, Alzheimer disease and diabetes mellitus type 2, and some suggestions of novel causal genes and candidate disease-causing subnetworks were provided for further investigation

    IL-17A Synergizes with IFN-Îł to Upregulate iNOS and NO Production and Inhibit Chlamydial Growth

    Get PDF
    IFN-Îł-mediated inducible nitric oxide synthase (iNOS) expression is critical for controlling chlamydial infection through microbicidal nitric oxide (NO) production. Interleukin-17A (IL-17A), as a new proinflammatory cytokine, has been shown to play a protective role in host defense against Chlamydia muridarum (Cm) infection. To define the related mechanism, we investigated, in the present study, the effect of IL-17A on IFN-Îł induced iNOS expression and NO production during Cm infection in vitro and in vivo. Our data showed that IL-17A significantly enhanced IFN-Îł-induced iNOS expression and NO production and inhibited Cm growth in Cm-infected murine lung epithelial (TC-1) cells. The synergistic effect of IL-17A and IFN-Îł on Chlamydia clearance from TC-1 cells correlated with iNOS induction. Since one of the main antimicrobial mechanisms of activated macrophages is the release of NO, we also examined the inhibitory effect of IL-17A and IFN-Îł on Cm growth in peritoneal macrophages. IL-17A (10 ng/ml) synergizes with IFN-Îł (200 U/ml) in macrophages to inhibit Cm growth. This effect was largely reversed by aminoguanidine (AG), an iNOS inhibitor. Finally, neutralization of IL-17A in Cm infected mice resulted in reduced iNOS expression in the lung and higher Cm growth. Taken together, the results indicate that IL-17A and IFN-Îł play a synergistic role in inhibiting chlamydial lung infection, at least partially through enhancing iNOS expression and NO production in epithelial cells and macrophages

    PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal

    Get PDF
    Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond–Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34+ peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara−/− mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara−/− mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid progenitor cells suggests that the clinically tested PPAR-α agonists we used may improve the efficacy of corticosteroids in treating Epo-resistant anaemias.United States. Defense Advanced Research Projects Agency (Grant HR0011-14-2-0005)United States. Army Medical Research and Materiel Command (Grant W81WH-12-1-0449)National Heart, Lung, and Blood Institute (Grant 2 P01 HL032262-25

    Structural trends in atomic nuclei from laser spectroscopy of tin

    Get PDF
    Tin is the chemical element with the largest number of stable isotopes. Its complete proton shell, comparable with the closed electron shells in the chemically inert noble gases, is not a mere precursor to extended stability; since the protons carry the nuclear charge, their spatial arrangement also drives the nuclear electromagnetism. We report high-precision measurements of the electromagnetic moments and isomeric differences in charge radii between the lowest 1/2(+), 3/2(+), and 11/2(-) states in Sn117-131, obtained by collinear laser spectroscopy. Supported by state-of-the-art atomic-structure calculations, the data accurately show a considerable attenuation of the quadrupole moments in the closed-shell tin isotopes relative to those of cadmium, with two protons less. Linear and quadratic mass-dependent trends are observed. While microscopic density functional theory explains the global behaviour of the measured quantities, interpretation of the local patterns demands higher-fidelity modelling. Measurements of the hyperfine structure of chemical elements isotopes provide unique insight into the atomic nucleus in a nuclear model-independent way. The authors present collinear laser spectroscopy data obtained at the CERN ISOLDE and measure hyperfine splitting along a long chain of odd-mass tin isotopes.Peer reviewe

    Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications

    Get PDF
    To photo-catalytically degrade RhB dye using solar irradiation, CeO2 doped TiO2 nanocomposites were synthesized hydrothermally at 700 °C for 9 hrs. All emission spectra showed a prominent band centered at 442 nm that was attributed to oxygen related defects in the CeO2-TiO2 nanocrystals. Two sharp absorption bands at 1418 cm−1 and 3323 cm−1 were attributed to the deformation and stretching vibration, and bending vibration of the OH group of water physisorbed to TiO2, respectively. The photocatalytic activities of Ce-TiO2 nanocrystals were investigated through the degradation of RhB under UV and UV+ visible light over a period of 8 hrs. After 8 hrs, the most intense absorption peak at 579 nm disappeared under the highest photocatalytic activity and 99.89% of RhB degraded under solar irradiation. Visible light-activated TiO2 could be prepared from metal-ion incorporation, reduction of TiO2, non-metal doping or sensitizing of TiO2 using dyes. Studying the antibacterial activity of Ce-TiO2 nanocrystals against E. coli revealed significant activity when 10 ÎŒg was used, suggesting that it can be used as an antibacterial agent. Its effectiveness is likely related to its strong oxidation activity and superhydrophilicity. This study also discusses the mechanism of heterogeneous photocatalysis in the presence of TiO2
    • 

    corecore