33 research outputs found

    Mindfulness and Symptoms o f Depression and Anxiety in the General Population: The Mediating Roles of Worry, Rumination, Reappraisal and Suppression

    Get PDF
    The present study examined the effects of mindfulness on depression and anxiety, both direct and indirect through the mediation of four mechanisms of emotional regulation: worry, rumination, reappraisal and suppression. Path analysis was applied to data collected from an international and non-clinical sample of 1151 adults, including both meditators and non-meditators, who completed an online questionnaire battery. Our results show that mindfulness are related to lower levels of depression and anxiety both directly and indirectly. Suppression, reappraisal, worry and rumination all acted as significant mediators of the relationship between mindfulness and depression. A similar picture emerged for the relationship between mindfulness and anxiety, with the difference that suppression was not a mediator. Our data also revealed that the estimated number of hours of mindfulness meditation practice did not affect depression or anxiety directly but did reduce these indirectly by increasing mindfulness. Worry and rumination proved to be the most potent mediating variables. Altogether, our results confirm that emotional regulation plays a significant mediating role between mindfulness and symptoms of depression and anxiety in the general population and suggest that meditation focusing on reducing worry and rumination may be especially useful in reducing the risk of developing clinical depression

    Seasonality of isoprene emissions and oxidation products above the remote Amazon

    Get PDF
    The Amazon rainforest is the largest source of isoprene emissions to the atmosphere globally. Under low nitric oxide (NO) conditions (i.e. at NO mixing ratios less than about 40 pptv), isoprene reacts rapidly with hydroxyl (OH) to form isoprene-derived peroxy radicals (ISOPOO), which subsequently react with the hydroperoxyl radical (HO2) to form isoprene epoxydiols (IEPOX). IEPOX compounds are efficient precursors to the formation of secondary organic aerosols (SOA). Natural isoprene emissions, therefore, have the potential to influence cloudiness, rainfall, radiation balance and climate. Here, we present the first seasonal analysis of isoprene emissions and concentrations above the Amazon based on eddy covariance flux measurements made at a remote forest location. We reveal the forest to maintain a constant emission potential of isoprene throughout the year (6.9 mg m-2 h-1). The emission potential of isoprene is calculated by normalising the measured fluxes to a set of standard conditions (303 K and 1500 mmol m-2 s-1). During the wet season a factor of two reduction in absolute emissions was observed but this is explained entirely on the basis of meteorology and leaf area index, not by a change in isoprene emissions potential. Using an innovative analysis of the isoprene fluxes, in combination with measurements of its oxidation products and detailed chemical box-modelling, we explore whether concentrations of IEPOX follow the same seasonal cycle as the isoprene precursor. Our analysis implies that during the dry season (Sep–Jan) air pollution from regional biomass burning provides a modest increase in NO concentrations (indirectly inferred from a combination of other anthropogenic tracer measurements and box-modelling) which creates a competing oxidation pathway for ISOPOO; rather than forming IEPOX, alternative products are formed with less propensity to produce aerosol. This competition decreases IEPOX formation rates by a factor of two in the dry season compared with a scenario with no anthropogenic NO pollution, and by 30% throughout the year. The abundance of biogenic SOA precursors in the Amazon appears not to be dictated by the seasonality of natural isoprene emissions as previously thought, but is instead driven by regional anthropogenic pollution which modifies the atmospheric chemistry of isoprene

    An improved method for measuring muon energy using the truncated mean of dE/dx

    Full text link
    The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure

    All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    Full text link
    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0{\deg} and 46{\deg}. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles {\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on composition assumption. Spectral indices above the knee range from -3.08 to -3.11 depending on primary mass composition assumption. Moreover, an indication of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure

    Fungal planet description sheets : 371–399

    Get PDF
    Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La RĂ©union, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.http://www.ingentaconnect.com/content/nhn/pimjam2016Forestry and Agricultural Biotechnology Institute (FABI)Microbiology and Plant Patholog

    ComparaciĂłn de distintas estrategias para la predicciĂłn de muerte a corto plazo en el paciente anciano infectado

    Get PDF
    Objective. The aim of this study was to determine the utility of a post hoc lactate added to SIRS and qSOFA score to predict 30-day mortality in older non-severely dependent patients attended for infection in the Emergency Department (ED). Methods. We performed an analytical, observational, prospective cohort study including patients of 75 years of age or older, without severe functional dependence, attended for an infectious disease in 69 Spanish ED for 2-day three seasonal periods. Demographic, clinical and analytical data were collected. The primary outcome was 30-day mortality after the index event. Results. We included 739 patients with a mean age of 84.9 (SD 6.0) years; 375 (50.7%) were women. Ninety-one (12.3%) died within 30 days. The AUC was 0.637 (IC 95% 0.587-0.688; p= 2 and 0.698 (IC 95% 0.635- 0.761; p= 2. Comparing receiver operating characteristic (ROC) there was a better accuracy of qSOFA vs SIRS (p=0.041). Both scales improve the prognosis accuracy with lactate inclusion. The AUC was 0.705 (IC95% 0.652-0.758; p<0.001) for SIRS plus lactate and 0.755 (IC95% 0.696-0.814; p<0.001) for qSOFA plus lactate, showing a trend to statistical significance for the second strategy (p=0.0727). Charlson index not added prognosis accuracy to SIRS (p=0.2269) or qSOFA (p=0.2573). Conclusions. Lactate added to SIRS and qSOFA score improve the accuracy of SIRS and qSOFA to predict short-term mortality in older non-severely dependent patients attended for infection. There is not effect in adding Charlson index

    Mindfulness and symptoms of depression and anxiety in the general population: The mediating roles of worry, rumination, reappraisal and suppression

    No full text
    [eng] The present study examined the effects of mindfulness on depression and anxiety, both direct and indirect through the mediation of four mechanisms of emotional regulation: worry, rumination, reappraisal and suppression. Path analysis was applied to data collected from an international and non-clinical sample of 1151 adults, including both meditators and non-meditators, who completed an online questionnaire battery. Our results show that mindfulness are related to lower levels of depression and anxiety both directly and indirectly. Suppression, reappraisal, worry and rumination all acted as significant mediators of the relationship between mindfulness and depression. A similar picture emerged for the relationship between mindfulness and anxiety, with the difference that suppression was not a mediator. Our data also revealed that the estimated number of hours of mindfulness meditation practice did not affect depression or anxiety directly but did reduce these indirectly by increasing mindfulness. Worry and rumination proved to be the most potent mediating variables. Altogether, our results confirm that emotional regulation plays a significant mediating role between mindfulness and symptoms of depression and anxiety in the general population and suggest that meditation focusing on reducing worry and rumination may be especially useful in reducing the risk of developing clinical depression

    Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle

    No full text
    Spatial gradients in mangrove tree height in barrier islands of Belize are associated with nutrient deficiency and sustained flooding in the absence of a salinity gradient. While nutrient deficiency is likely to affect many parameters, here we show that addition of phosphorus (P) to dwarf mangroves stimulated increases in diameters of xylem vessels, area of conductive xylem tissue and leaf area index (LAI) of the canopy. These changes in structure were consistent with related changes in function, as addition of P also increased hydraulic conductivity (K-s), stomatal conductance and photosynthetic assimilation rates to the same levels measured in taller trees fringing the seaward margin of the mangrove. Increased xylem vessel size and corresponding enhancements in stern hydraulic conductivity in P fertilized dwarf trees came at the cost of enhanced midday loss of hydraulic conductivity and was associated with decreased assimilation rates in the afternoon. Analysis of trait plasticity identifies hydraulic properties of trees as more plastic than those of leaf structural and physiological characteristics, implying that hydraulic properties are key in controlling growth in mangroves. Alleviation of P deficiency, which released trees from hydraulic limitations, reduced the structural and functional distinctions between dwarf and taller fringing tree forms of Rhizophora mangle
    corecore