772 research outputs found

    Chronic cigarette smoking is linked with structural alterations in brain regions showing acute nicotinic drug-induced functional modulations

    Get PDF
    Background Whereas acute nicotine administration alters brain function which may, in turn, contribute to enhanced attention and performance, chronic cigarette smoking is linked with regional brain atrophy and poorer cognition. However, results from structural magnetic resonance imaging (MRI) studies comparing smokers versus nonsmokers have been inconsistent and measures of gray matter possess limited ability to inform functional relations or behavioral implications. The purpose of this study was to address these interpretational challenges through meta-analytic techniques in the service of clarifying the impact of chronic smoking on gray matter integrity and more fully contextualizing such structural alterations. Methods We first conducted a coordinate-based meta-analysis of structural MRI studies to identify consistent structural alterations associated with chronic smoking. Subsequently, we conducted two additional meta-analytic assessments to enhance insight into potential functional and behavioral relations. Specifically, we performed a multimodal meta-analytic assessment to test the structural?functional hypothesis that smoking-related structural alterations overlapped those same regions showing acute nicotinic drug-induced functional modulations. Finally, we employed database driven tools to identify pairs of structurally impacted regions that were also functionally related via meta-analytic connectivity modeling, and then delineated behavioral phenomena associated with such functional interactions via behavioral decoding. Results Across studies, smoking was associated with convergent structural decreases in the left insula, right cerebellum, parahippocampus, multiple prefrontal cortex (PFC) regions, and the thalamus. Indicating a structural?functional relation, we observed that smoking-related gray matter decreases overlapped with the acute functional effects of nicotinic agonist administration in the left insula, ventromedial PFC, and mediodorsal thalamus. Suggesting structural-behavioral implications, we observed that the left insula?s task-based, functional interactions with multiple other structurally impacted regions were linked with pain perception, the right cerebellum?s interactions with other regions were associated with overt body movements, interactions between the parahippocampus and thalamus were linked with memory processes, and interactions between medial PFC regions were associated with face processing. Conclusions Collectively, these findings emphasize brain regions (e.g., ventromedial PFC, insula, thalamus) critically linked with cigarette smoking, suggest neuroimaging paradigms warranting additional consideration among smokers (e.g., pain processing), and highlight regions in need of further elucidation in addiction (e.g., cerebellum). Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0100-5) contains supplementary material, which is available to authorized users

    Evidence for a black hole in the historical X-ray transient A 1524-61 (=KY TrA)

    Full text link
    We present VLT spectroscopy, high-resolution imaging and time-resolved photometry of KY TrA, the optical counterpart to the X-ray binary A 1524-61. We perform a refined astrometry of the field, yielding improved coordinates for KY TrA and the field star interloper of similar optical brightness that we locate 0.64±0.040.64 \pm 0.04 arcsec SE. From the spectroscopy, we refine the radial velocity semi-amplitude of the donor star to K2=501±52K_2 = 501 \pm 52 km s1^{-1} by employing the correlation between this parameter and the full-width at half-maximum of the Hα\alpha emission line. The rr-band light curve shows an ellipsoidal-like modulation with a likely orbital period of 0.26±0.010.26 \pm 0.01 d (6.24±0.246.24 \pm 0.24 h). These numbers imply a mass function f(M1)=3.2±1.0f(M_1) = 3.2 \pm 1.0 M_\odot. The KY TrA de-reddened quiescent colour (ri)0=0.27±0.08(r-i)_0 = 0.27 \pm 0.08 is consistent with a donor star of spectral type K2 or later, in case of significant accretion disc light contribution to the optical continuum. The colour allows us to place a very conservative upper limit on the companion star mass, M20.94M_2 \leq 0.94 M_\odot, and, in turn, on the binary mass ratio, q=M2/M10.31q = M_2/M_1 \leq 0.31. By exploiting the correlation between the binary inclination and the depth of the Hα\alpha line trough, we establish i=57±13i = 57 \pm 13 deg. All these values lead to a compact object and donor mass of M1=5.82.4+3.0M_1 = 5.8^{+3.0}_{-2.4} M_\odot and M2=0.5±0.3M_2 = 0.5 \pm 0.3 M_\odot, respectively, thus confirming the black hole nature of the accreting object. In addition, we estimate a distance toward the system of 8.0±0.98.0 \pm 0.9 kpc.Comment: 7 pages, 5 figure

    Black hole mass and spin measurements through the Relativistic Precession Model: XTE J1859+226

    Full text link
    The X-ray light curves of accreting black holes and neutron stars in binary systems show various types of quasi-periodic oscillations (QPOs), the origin of which is still debated. The Relativistic Precession Model identifies the QPO frequencies with fundamental time scales from General Relativity, and has been proposed as a possible explanation of certain types of such oscillations. Under specific conditions (i.e., the detection of a particular QPOs triplet) such a model can be used to obtain self-consistent measurements of the mass and spin of the compact object. So far this has been possible only in the black hole binary GRO J1655-40. In the RXTE/PCA data from the 1999-2000 outburst of the black hole transient XTE J1859+226 we found a QPO triplet, and used the the Relativistic Precession Model to obtain high-precision measurements of the black hole mass and spin - M = (7.85+/-0.46) Msun, a* = 0.149+/-0.005 - the former being consistent with the most recent dynamical mass determination from optical measurements. Similarly to what has been already observed in other black hole systems, the frequencies of the QPOs and broad-band noise components match the general relativistic frequencies of particle motion close to the compact object predicted by the model. Our findings confirm previous results and further support the validity of the Relativistic Precession Model, which is the only electromagnetic-measurement-based method that so far has consistently yielded spins close to those from the gravitational waves produced by merging binary black holes.Comment: 8 pages, 5 figures, accepted for publication in MNRA

    Long-term in situ persistence of biodiversity in tropical sky islands revealed by landscape genomics

    Get PDF
    Tropical mountains are areas of high species richness and endemism. Two historical phenomena may have contributed to this: (1) fragmentation and isolation of habitats may have promoted the genetic differentiation of populations and increased the possibility of allopatric divergence and speciation, and; (2) the mountain areas may have allowed long-term population persistence during global climate fluctuations. These two phenomena have been studied using either species occurrence data or estimating species divergence times. However, only few studies have used intraspecific genetic data to analyse the mechanisms by which endemism may emerge at the microevolutionary scale. Here, we use landscape analysis of genomic SNP data sampled from two high-elevation plant species from an archipelago of tropical sky-islands (the Transmexican Volcanic Belt) to test for population genetic differentiation, synchronous demographic changes and habitat persistence. We show that genetic differentiation can be explained by the degree of glacial habitat connectivity among mountains, and that mountains have facilitated the persistence of populations throughout glacial/interglacial cycles. Our results support the ongoing role of tropical mountains as cradles for biodiversity by uncovering cryptic differentiation and limits to gene flow

    The orbital period, black hole mass and distance to the X-ray transient GRS 1716-249 (=N Oph 93)

    Full text link
    We present evidence for a 0.278(8) d (=6.7 h) orbital period in the X-ray transient GRS 1716-249 (=N Oph 93), based on a superhump modulation detected during the 1995 mini-outburst plus ellipsoidal variability in quiescence. With a quiescent magnitude of r=23.19+-0.15 N Oph 93 is too faint to warrant a full dynamical study through dedicated time-resolved spectroscopy. Instead, we apply the FWHM-K2 correlation to the disc Halpha emission line detected in Gran Telescopio Canarias spectra and obtain K2=521+-52 km/s. This leads to a mass function f(M)=4.1+-1.2 Msun, thus indicating the presence of a black hole in this historic X-ray transient. Furthermore, from the depth of the Halpha trough and the quiescent light curve we constrain the binary inclination to i=61+-15 deg, while the detection of superhumps sets an upper limit to the donor to compact star mass ratio q=M2/M1<=0.25. Our de-reddened (r-i) colour is consistent with a ~K6 main sequence star that fills its Roche lobe in a 0.278 d orbit. Using all this information we derive a compact object mass M1=6.4+3.2-2.0 Msun at 68 per cent confidence. We also constrain the distance to GRS 1716-249 to 6.9+-1.1 kpc, placing the binary ~0.8 kpc above the Galactic Plane, in support of a large natal kick.Comment: Accepted for publication in MNRAS, 12 pages, 9 figures, 2 Table

    Improving women's knowledge about prenatal screening in the era of non-invasive prenatal testing for Down syndrome - development and acceptability of a low literacy decision aid.

    Full text link
    BACKGROUND: Access to information about prenatal screening is important particularly in light of new techniques such as non-invasive prenatal testing (NIPT). This study aimed to develop and examine the acceptability of a low literacy decision aid (DA) about Down syndrome screening among pregnant women with varying education levels and GPs. METHODS: We developed a DA booklet providing information about first-trimester combined testing, maternal serum screening, and NIPT. GPs and women participated in a telephone interview to examine the acceptability of the DA and measure screening knowledge before and after reading the DA. The knowledge measure was designed to assess whether women had understood the gist of the information presented in the decision aid. It comprised conceptual questions (e.g. screening tells you the chance of having a baby with Down syndrome) and numeric questions (e.g. the accuracy of different screening tests). RESULTS: Twenty-nine women and 18 GPs participated. Regardless of education level, most women found the booklet 'very' clearly presented (n = 22, 76%), and 'very' informative (n = 23, 80%). Overall, women's conceptual and numeric knowledge improved after exposure to the DA, from 4% having adequate knowledge to 69%. Women's knowledge of NIPT also improved after receiving the decision aid, irrespective of education. Most GPs found it 'very' clearly presented (n = 13, 72%), and that it would 'very much' facilitate decision-making (n = 16, 89%). CONCLUSIONS: The DA was found to be acceptable to women as well as GPs. A comprehensive evaluation of the efficacy of the decision aid compared to standard information is an important next step. Strategies are needed on how to implement the tool in practice

    Dysfunctional LAT2 amino acid transporter is associated with cataract in mouse and humans

    Get PDF
    Cataract, the loss of ocular lens transparency, accounts for ∼50% of worldwide blindness and has been associated with water and solute transport dysfunction across lens cellular barriers. We show that neutral amino acid antiporter LAT2 (Slc7a8) and uniporter TAT1 (Slc16a10) are expressed on mouse ciliary epithelium and LAT2 also in lens epithelium. Correspondingly, deletion of LAT2 induced a dramatic decrease in lens essential amino acid levels that was modulated by TAT1 defect. Interestingly, the absence of LAT2 led to increased incidence of cataract in mice, in particular in older females, and a synergistic effect was observed with simultaneous lack of TAT1. Screening SLC7A8 in patients diagnosed with congenital or age-related cataract yielded one homozygous single nucleotide deletion segregating in a family with congenital cataract. Expressed in HeLa cells, this LAT2 mutation did not support amino acid uptake. Heterozygous LAT2 variants were also found in patients with cataract some of which showed a reduced transport function when expressed in HeLa cells. Whether heterozygous LAT2 variants may contribute to the pathology of cataract needs to be further investigated. Overall, our results suggest that defects of amino acid transporter LAT2 are implicated in cataract formation, a situation that may be aggravated by TAT1 defects

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis
    corecore