102 research outputs found

    Efficient In-Context Learning in Vision-Language Models for Egocentric Videos

    Full text link
    Recent advancements in text-only large language models (LLMs) have highlighted the benefit of in-context learning for adapting to new tasks with a few demonstrations. However, extending in-context learning to large vision-language models (VLMs) using a huge amount of naturalistic vision-language data has shown limited success, particularly for egocentric videos, due to high data collection costs. We propose a novel training method E\mathbb{E}fficient I\mathbb{I}n-context L\mathbb{L}earning on E\mathbb{E}gocentric V\mathbb{V}ideos (EILEV\mathbb{EILEV}), which elicits in-context learning in VLMs for egocentric videos without requiring massive, naturalistic egocentric video datasets. EILEV\mathbb{EILEV} involves architectural and training data adaptations to allow the model to process contexts interleaved with video clips and narrations, sampling of in-context examples with clusters of similar verbs and nouns, use of data with skewed marginal distributions with a long tail of infrequent verbs and nouns, as well as homonyms and synonyms. Our evaluations show that EILEV\mathbb{EILEV}-trained models outperform larger VLMs trained on a huge amount of naturalistic data in in-context learning. Furthermore, they can generalize to not only out-of-distribution, but also novel, rare egocentric videos and texts via in-context learning, demonstrating potential for applications requiring cost-effective training, and rapid post-deployment adaptability. Our code and demo are available at \url{https://github.com/yukw777/EILEV}.Comment: 10 pages, LaTeX; added acknowledgment

    Angle-selective perfect absorption with two-dimensional materials

    Get PDF
    Two-dimensional (2D) materials have great potential in photonic and optoelectronic devices. However, the relatively weak light absorption in 2D materials hinders their application in practical devices. Here, we propose a general approach to achieve angle-selective perfect light absorption in 2D materials. As a demonstration of the concept, we experimentally show giant light absorption by placing large-area single-layer graphene on a structure consisting of a chalcogenide layer atop a mirror and achieving a total absorption of 77.6% in the mid-infrared wavelength range (~13 μm), where the graphene contributes a record-high 47.2% absorptivity of mid-infrared light. Construction of such an angle-selective thin optical element is important for solar and thermal energy harvesting, photo-detection and sensing applications. Our study points to a new opportunity to combine 2D materials with photonic structures to enable novel device applications

    Accuracies of field CO2–H2O data from open-path eddy-covariance flux systems: assessment based on atmospheric physics and biological environment

    Get PDF
    Ecosystem CO2–H2O data measured by infrared gas analyzers in open-path eddy-covariance (OPEC) systems have numerous applications, such as estimations of CO2 and H2O fluxes in the atmospheric boundary layer. To assess the applicability of the data for these estimations, data uncertainties from analyzer measurements are needed. The uncertainties are sourced from the analyzers in zero drift, gain drift, cross-sensitivity, and precision variability. These four uncertainty sources are individually specified for analyzer performance, but so far no methodology exists yet to combine these individual sources into a composite uncertainty for the specification of an overall accuracy, which is ultimately needed. Using the methodology for closed-path eddy-covariance systems, this overall accuracy for OPEC systems is determined from all individual uncertainties via an accuracy model and further formulated into CO2 and H2O accuracy equations. Based on atmospheric physics and the biological environment, for EC150 infrared CO2–H2O analyzers, these equations are used to evaluate CO2 accuracy (±1.22 mgCO2 m−3, relatively ±0.19 %) and H2O accuracy (±0.10 gH2O m−3, relatively ±0.18 % in saturated air at 35 ∘C and 101.325 kPa). Both accuracies are applied to conceptual models addressing their roles in uncertainty analyses for CO2 and H2O fluxes. For the high-frequency air temperature derived from H2O density along with sonic temperature and atmospheric pressure, the role of H2O accuracy in its uncertainty is similarly addressed. Among the four uncertainty sources, cross-sensitivity and precision variability are minor, although unavoidable, uncertainties, whereas zero drift and gain drift are major uncertainties but are minimizable via corresponding zero and span procedures during field maintenance. The accuracy equations provide rationales to assess and guide the procedures. For the atmospheric background CO2 concentration, CO2 zero and CO2 span procedures can narrow the CO2 accuracy range by 40 %, from ±1.22 to ±0.72 mgCO2 m−3. In hot and humid weather, H2O gain drift potentially adds more to the H2O measurement uncertainty, which requires more attention. If H2O zero and H2O span procedures can be performed practically from 5 to 35 ∘C, the H2O accuracy can be improved by at least 30 %: from ±0.10 to ±0.07 gH2O m−3. Under freezing conditions, the H2O span procedure is impractical but can be neglected because of its trivial contributions to the overall uncertainty. However, the zero procedure for H2O, along with CO2, is imperative as an operational and efficient option under these conditions to minimize H2O measurement uncertainty.</p

    Gene Expression Profiling of Lacrimal Glands Identifies the Ectopic Expression of MHC II on Glandular Cells as a Presymptomatic Feature in a Mouse Model of Primary Sjögren's Syndrome

    Get PDF
    Ectopic expression of MHC II molecules on glandular cells is a feature of primary Sjögren's syndrome (pSS). However, the cause of this ectopic expression and its potential role in the pathogenesis of the disease remains elusive. Here, we report that ectopic expression of MHC II molecules on glandular cells represents an early presymptomatic event in a mouse model of pSS induced by immunization of Ro60_316-335 peptide emulsified in TiterMax® as an adjuvant. Ectopic expression of MHC II was induced by TiterMax® but not by complete freund's adjuvant (CFA). Furthermore, immunization with Ro60_316-335 peptide emulsified in TiterMax®, but not in CFA, induced a pSS-like disease in mice. Our results suggests that ectopic expression of MHC II molecules on glandular cells represents a presymptomatic feature of pSS and that such ectopic expression can be induced by exogenous factors. In addition, this study also provides a novel mechanism how adjuvants can amplify immune responses

    The amino acid variation within the binding pocket 7 and 9 of HLA-DRB1 molecules are associated with primary Sjögren's syndrome

    Get PDF
    在这篇论文当中,郑俊峰博士领导的课题小组发现在人白细胞抗原二类基因(HLA-II)中,HLA-DRB1*0803是中国南方原发干燥综合征易感基因。进一步通过结构生物信息学模拟DRB1*0803 分子结构并分析,发现HLA的抗原肽结合槽口袋9的表面电势的不同,可能是疾病易感性差异的分子基础。自身免疫病是由遗传因素和环境因素共同导致的疾病,在遗传因素里,HLA位点是很多自身免疫病的主要易感基因。但是,尽管HLA和自身免疫病的相关性非常明确,这种相关背后的机理还不清楚。这项关于HLA和干燥综合征相关性的研究在这一问题上做出了探索性的发现,对HLA和干燥综合征的相关的机制提出了新的观点。该成果也是自身免疫学实验室在干燥综合征方向上陆续发表的第4篇学术论文。Primary Sjögren's syndrome (pSS) is associated with HLA-DRB1 loci, but the association of amino acid variations in the hypervariable region of the HLA-DR β1 chain with pSS is largely unknown. In this study, we aimed to identify the amino acid variations within the hypervariable region of HLA-DRB1 molecule which are associated with the susceptibility to pSS. We sequenced the 2nd exon of the HLA-DRB1 locus in 52 pSS patients and 179 controls. The HLA-DRB1*0803 is the allele that shows the strongest association with pSS in Chinese population (OR = 3.0, P = 2.4 × 10 −4 ). Furthermore, amino acid variations within the binding pocket P7 and P9 are associated with the susceptibility to pSS. An interaction between two residues within P7, β47 and β67, is associated with pSS. Structural modeling studies demonstrated that the electrostatics of peptide binding pocket 9 are opposite in pSS-susceptible and -protective HLA-DRB1 alleles. In conclusion, our results suggest that structural heterogeneity of the HLA-DRB1 peptide binding pocket P7 and P9 might play a role in the pathogenesis of pSS

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre

    Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes.

    Get PDF
    Multiple primary tumors (MPTs) affect a substantial proportion of cancer survivors and can result from various causes, including inherited predisposition. Currently, germline genetic testing of MPT-affected individuals for variants in cancer-predisposition genes (CPGs) is mostly targeted by tumor type. We ascertained pre-assessed MPT individuals (with at least two primary tumors by age 60 years or at least three by 70 years) from genetics centers and performed whole-genome sequencing (WGS) on 460 individuals from 440 families. Despite previous negative genetic assessment and molecular investigations, pathogenic variants in moderate- and high-risk CPGs were detected in 67/440 (15.2%) probands. WGS detected variants that would not be (or were not) detected by targeted resequencing strategies, including low-frequency structural variants (6/440 [1.4%] probands). In most individuals with a germline variant assessed as pathogenic or likely pathogenic (P/LP), at least one of their tumor types was characteristic of variants in the relevant CPG. However, in 29 probands (42.2% of those with a P/LP variant), the tumor phenotype appeared discordant. The frequency of individuals with truncating or splice-site CPG variants and at least one discordant tumor type was significantly higher than in a control population (χ2 = 43.642; p ≤ 0.0001). 2/67 (3%) probands with P/LP variants had evidence of multiple inherited neoplasia allele syndrome (MINAS) with deleterious variants in two CPGs. Together with variant detection rates from a previous series of similarly ascertained MPT-affected individuals, the present results suggest that first-line comprehensive CPG analysis in an MPT cohort referred to clinical genetics services would detect a deleterious variant in about a third of individuals.JW is supported by a Cancer Research UK Cambridge Cancer Centre Clinical Research Training Fellowship. Funding for the NIHR BioResource – Rare diseases project was provided by the National Institute for Health Research (NIHR, grant number RG65966). ERM acknowledges support from the European Research Council (Advanced Researcher Award), NIHR (Senior Investigator Award and Cambridge NIHR Biomedical Research Centre), Cancer Research UK Cambridge Cancer Centre and Medical Research Council Infrastructure Award. The University of Cambridge has received salary support in respect of EM from the NHS in the East of England through the Clinical Academic Reserve. The views expressed are those of the authors and not necessarily those of the NHS or Department of Health. DGE is an NIHR Senior Investigator and is supported by the all Manchester NIHR Biomedical Research Centre
    corecore