80 research outputs found

    Análisis y evaluación de los principales componentes químicos de diferentes genotipos de tabaco (Nicotiana tabacum L.)

    Get PDF
    The nicotine, reducing sugar and ion contents from the threshing of tobacco can re-used from the industry. The crude oil and fatty oil compositions of tobacco seeds can be considered as an alternative source of raw material for biodiesel. In this study, the nicotine, reducing sugar content, crude oil, fatty acid composition and ion content were determined in 29 genotypes and 1 cultivar of tobacco. The genetic diversity was determined among the tobacco cultivar and genotypes base on examined properties. The nicotine content varied between 0.10-0.87%, reducing sugar ranged from 9.70-21.30%, crude oil varied between 24.33-47.00% and fatty acid compositions was found in the range of 77.94-100%. Linoleic (13.92-75.04%) and butyric (0.33-64.98%) acids were the major components. Overall, the BSR-5 (52.56 mg/g) and ESR-5 (44.58 mg/g) genotypes exhibited the highest potassium contents and ESR-7 (6.54 mg/g) and ESR-8 (1.28 mg/g) genotypes had the lowest chlorine contents. As a result of this study, the highest nicotine content, reducing sugar and crude oil of tobacco were found in ESR-4, ESR-11 and BSR-5 genotypes, respectively. The dendrogram analysis divided the tobacco into two main groups and most of the same origin genotypes fell into the same group. The results indicated that the different tobacco leaves and seeds can be evaluated as an alternative source in the industry as cigarettes, biodiesel and different industrial applications such as cosmetic, oil paints and varnishes based on their chemical properties.La nicotina, el contenido de iones y azúcares reductores pueden usarse en la selección en la industria del tabaco. La composición del aceite crudo y los ácidos grasos de las semillas de tabaco pueden evaluarse de manera alternativa para la industria de biodiesel. En este estudio, la nicotina, el contenido de azúcares reductores, el aceite crudo, la composición en ácidos grasos y el contenido de iones se determinaron en tabacos de 29 genotipos y 1 cultivar. La diversidad genética se determinó entre los cultivares de tabaco y los genotipos basándose en las propiedades examinadas. El contenido de nicotina varió entre 0,10-0,87%, el valor de azúcares reductores varió entre 9,70-21,30%, el aceite crudo osciló entre 24,33-47,00% y las composiciones de ácidos grasos oscilaron entre 77,94 y 100%. Los componentes principales fueron los ácidos linoleico (13,92-75,04%) y butírico (0,33-64,98%). En general, en los genotipos BSR-5 (52,56 mg/g) y ESR-5 (44,58 mg/g) mostraron el mayor contenido de potasio y los genotipos ESR-7 (6,54 mg/g) y ESR-8 (1,28 mg/g) el contenido más bajo de cloro. Como resultado de este estudio, se encontró un mayor contenido de nicotina, azúcares reductores y aceite crudo en los tabacos de los genotipos ESR-4, ESR-11 y BSR-5, respectivamente. El análisis mediante dendrograma mostró dos grupos principales y la mayor parte de los mismos genotipos de igual origen tuvieron lugar en el mismo grupo. Los resultados indicaron que las diferentes hojas y semillas de tabaco pueden evaluarse como una fuente alternativa en la industria como cigarrillos, biodiesel y diferentes industrias como cosmética, pinturas al óleo y barnices en función de sus propiedades químicas

    Mobile element insertions in rare diseases: a comparative benchmark and reanalysis of 60,000 exome samples

    Get PDF
    Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES

    Characteristics of Different Systems for the Solar Drying of Crops

    Get PDF
    Solar dryers are used to enable the preservation of agricultural crops, food processing industries for dehydration of fruits and vegetables, fish and meat drying, dairy industries for production of milk powder, seasoning of wood and timber, textile industries for drying of textile materials. The fundamental concepts and contexts of their use to dry crops is discussed in the chapter. It is shown that solar drying is the outcome of complex interactions particular between the intensity and duration of solar energy, the prevailing ambient relative humidity and temperature, the characteristics of the particular crop and its pre-preparation and the design and operation of the solar dryer

    Twist exome capture allows for lower average sequence coverage in clinical exome sequencing

    Get PDF
    Background Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. Results We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. Conclusion We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques

    Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases.

    Get PDF
    For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient's data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together >300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of >19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe

    Solving patients with rare diseases through programmatic reanalysis of genome-phenome data.

    Get PDF
    Funder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health); doi: https://doi.org/10.13039/100011272; Grant(s): 305444, 305444Funder: Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness); doi: https://doi.org/10.13039/501100003329Funder: Generalitat de Catalunya (Government of Catalonia); doi: https://doi.org/10.13039/501100002809Funder: EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj); doi: https://doi.org/10.13039/501100008530Funder: Instituto Nacional de Bioinformática ELIXIR Implementation Studies Centro de Excelencia Severo OchoaFunder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health)Reanalysis of inconclusive exome/genome sequencing data increases the diagnosis yield of patients with rare diseases. However, the cost and efforts required for reanalysis prevent its routine implementation in research and clinical environments. The Solve-RD project aims to reveal the molecular causes underlying undiagnosed rare diseases. One of the goals is to implement innovative approaches to reanalyse the exomes and genomes from thousands of well-studied undiagnosed cases. The raw genomic data is submitted to Solve-RD through the RD-Connect Genome-Phenome Analysis Platform (GPAP) together with standardised phenotypic and pedigree data. We have developed a programmatic workflow to reanalyse genome-phenome data. It uses the RD-Connect GPAP's Application Programming Interface (API) and relies on the big-data technologies upon which the system is built. We have applied the workflow to prioritise rare known pathogenic variants from 4411 undiagnosed cases. The queries returned an average of 1.45 variants per case, which first were evaluated in bulk by a panel of disease experts and afterwards specifically by the submitter of each case. A total of 120 index cases (21.2% of prioritised cases, 2.7% of all exome/genome-negative samples) have already been solved, with others being under investigation. The implementation of solutions as the one described here provide the technical framework to enable periodic case-level data re-evaluation in clinical settings, as recommended by the American College of Medical Genetics

    A study of yield and yield components of different ornamental pepper (Capsicum sp.) species and lines in Cukurova ecological conditions

    No full text
    PubMed: 21870629This study examined some phenological, morphological and pomological features of different ornamental pepper (Capsicum sp.) species and lines under the conditions of Cukurova Region, Turkey. The field trials used a randomized complete block design with three replications. Different ornamental pepper species and lines varied depending on testing years, in terms of plant height (cm), the number of branches (number/plant), the number of fruits (number/plant), the weight of fresh fruit (g plant-1), the yield of fresh fruit (kg ha-1) and the breadth and length of fruit. Fresh yields of different ornamental pepper species and lines varied between 9412-24418 kg ha-1 in the testing years. The highest fresh yield was observed from line C. frutescens 26 (24418 kg ha-1). It was determined that the fresh yield from the first harvest was higher than the others. © 2011 Asian Network for Scientific Information
    corecore