238 research outputs found

    Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China

    Get PDF
    Phosphorus (P) is an essential nutrient for crop production and is often in short supply. The necessary P fertilizers are derived from deposits in the lithosphere, which are limited in size and nonrenewable. China is one of the world's largest consumers and producers of P fertilizers. Thus, P resource use efficiency in China has an important impact on the worldwide efficiency of P resource use. This study examined the P fertilizer industry in China in terms of P resource use efficiency, economics, and environmental risk, and explored options for improvement through scenario analysis. P resource use efficiency decreased from a mean of 71% before 1995 to 39% in 2003, i.e., from every 10 kg P in rock material, only 3.9 kg P was used to produce fertilizer, 5.6 kg of the residues were discarded at the mining site, and 0.5 kg was manufacturing waste. The decreased efficiency was caused by increased P rock mining activities, especially from small, inefficient miners. Enhanced mining was supported by local governments and by the growing P fertilizer industry, where high-analysis P fertilizers have fourfold higher gross margins than traditional low-analysis fertilizers. Although the growing fertilizer industry is contributing significantly to the development of some regions, the economic efficiency is still lower than in other countries, e.g., in the USA. The P resource is depleting quickly, and the environmental consequences of inefficient use are serious. The amount of accumulated phosphor gypsum was estimated to be 110 Tg, the amount of deteriorated land reached 475 km(2), and the consumption of ground water was 1.8 billion m(3) per year. The low efficiency and serious environmental risk could be attributed to the numerous small inefficient miners, which were supported by intervention of governmental subsidies and taxes after 1995. This study proved that there is a great deal of room for improvement in the resource use efficiency up to 77% by integrated measures, which need broad cooperation of miners, fertilizer plants, and agriculture

    Interwell coupling effect in Si/SiGe quantum wells grown by ultra high vacuum chemical vapor deposition

    Get PDF
    Si/Si0.66Ge0.34coupled quantum well (CQW) structures with different barrier thickness of 40, 4 and 2 nm were grown on Si substrates using an ultra high vacuum chemical vapor deposition (UHV-CVD) system. The samples were characterized using high resolution x-ray diffraction (HRXRD), cross-sectional transmission electron microscopy (XTEM) and photoluminescence (PL) spectroscopy. Blue shift in PL peak energy due to interwell coupling was observed in the CQWs following increase in the Si barrier thickness. The Si/SiGe heterostructure growth process and theoretical band structure model was validated by comparing the energy of the no-phonon peak calculated by the 6 + 2-bandk·pmethod with experimental PL data. Close agreement between theoretical calculations and experimental data was obtained

    Prunella vulgaris: A comprehensive review of chemical constituents, pharmacological effects and clinical applications.

    Get PDF
    Prunella vulgaris (PV) is a perennial herb belonging to the Labiate family and is widely distributed in northeastern Asian countries such as Korea, Japan, and China. It is reported to display diverse biological activities including anti-microbial, anti-cancer, and anti-inflammation as determined by in vitro or in vivo studies. So far, about 200 compounds have been isolated from PV plant and majority of these have been characterized mainly as triterpenoids, sterols and flavonoids, followed by coumarins, phenylpropanoids, polysaccharides and volatile oils. This review summarizes and analyzes the current knowledge on the chemical constituents, pharmacological activities, mechanisms of action and clinical applications of the PV plant including its potential as a future medicinal plant. Although some of the chemical constituents of the PV plant and their mechanism of action have been investigated the biological activities of many of these remain unknown and further clinical trials are required to further enhance its reputation as a medicinal plant

    Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract

    Get PDF
    Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 1

    Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error.

    Get PDF
    Corneal curvature, a highly heritable trait, is a key clinical endophenotype for myopia - a major cause of visual impairment and blindness in the world. Here we present a trans-ethnic meta-analysis of corneal curvature GWAS in 44,042 individuals of Caucasian and Asian with replication in 88,218 UK Biobank data. We identified 47 loci (of which 26 are novel), with population-specific signals as well as shared signals across ethnicities. Some identified variants showed precise scaling in corneal curvature and eye elongation (i.e. axial length) to maintain eyes in emmetropia (i.e. HDAC11/FBLN2 rs2630445, RBP3 rs11204213); others exhibited association with myopia with little pleiotropic effects on eye elongation. Implicated genes are involved in extracellular matrix organization, developmental process for body and eye, connective tissue cartilage and glycosylation protein activities. Our study provides insights into population-specific novel genes for corneal curvature, and their pleiotropic effect in regulating eye size or conferring susceptibility to myopia

    ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    Get PDF
    ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges

    U-band finline bandstop filter with dual-mode resonator

    No full text
    corecore