354 research outputs found

    Cramer-Rao Bound for Target Localization for Widely Separated MIMO Radar

    Get PDF
    In this paper, we derive the Cramer-Rao Bounds (CRBs) for the 2-dimensional (2D) target localization and velocity estimations for widely separated Multiple-Input Multiple-Output (MIMO) radar. The transmitters emit signals with different frequencies and the receivers receive these signals with amplitude fluctuations and with Doppler shifts due to the target motion. The received signal model is constructed using the Swerling target fluctuations to take into account the undesired effects of target amplitude and phase fluctuations. Moreover, the time delays and the Doppler frequencies are included in the signal model to get a more realistic model. Then, the Cramer-Rao Bounds are derived for the proposed signal model for the target position and velocity estimations. Contrary to known models of CRBs, we derived the CRBs jointly and using the Swerling target fluctuations

    A Novel Data Association Method for Frequency Based MIMO Systems

    Get PDF
    Whenever more than one target exist, the most important problem is associating the received signals to the correct targets. This problem appears for all multiple target applications such as multiple target tracking and it is known as "Data Association". For frequency-based systems, Multiple-Input Multiple-Output (MIMO) configuration together with the frequency diversity of the system enable us to determine the number of moving targets by using the Doppler frequencies. These frequencies include all relevant information about the location, velocity and direction of the targets and hence, they can be used efficiently to estimate the other unknown target parameters

    Evaluating performance of missing data imputation methods in IRT analyses

    Get PDF
    Missing data is a common problem in datasets that are obtained by administration of educational and psychological tests. It is widely known that existence of missing observations in data can lead to serious problems such as biased parameter estimates and inflation of standard errors. Most of the missing data imputation methods are focused on datasets containing continuous variables. However, it is very common to work with datasets that are made of dichotomous responses of individuals to a set of test items to which IRT models are fitted. This study compared the performances of missing data imputation methods that are IRT model-based imputation (MBI), Expectation-Maximization (EM), Multiple Imputation (MI), and Regression Imputation (RI). Parameter recoveries were evaluated by repetitive analyses that were conducted on samples that were drawn from an empirical large-scale dataset. Results showed that MBI outperformed other imputation methods in recovering item difficulty and mean of the ability parameters, especially with higher sample sizes. However, MI produced the best results in recovery of item discrimination parameters

    Soft tissue pathosis associated with asymptomatic impacted lower third molars

    Get PDF
    Objective: The aim of this study was to identify the prevalence of pathological changes in the pericoronal tissue of asymptomatic impacted lower third molars and to assess the correlation between pathological changes and patient demographic, radiographic and morphological characteristics. Study Design: Follicles associated with fully impacted lower third molars were submitted for histological examination after surgical extraction from 50 patients. The correlation between pathological changes in the dental follicle and age, gender, depth of impaction, angular position, and coverage and tooth development was analyzed. Results: Cystic changes were observed in 10% of specimens and inflammatory changes in 62%. Incidence of pathological changes was significantly higher in Class B impacted teeth when compared to Class C impacted teeth. A significant correlation was found between epithelial cell activity and the completion of tooth development. Conclusion: We recommend monitoring all third molars whether or not they are symptomatic and conducting histopathological analyses on all surgically extracted follicle tissue. © Medicina Oral S. L

    Learning adjectives and nouns from affordances on the iCub humanoid robot

    Get PDF
    This article studies how a robot can learn nouns and adjectives in language. Towards this end, we extended a framework that enabled robots to learn affordances from its sensorimotor interactions, to learn nouns and adjectives using labeling from humans. Specifically, an iCub humanoid robot interacted with a set of objects (each labeled with a set of adjectives and a noun) and learned to predict the effects (as labeled with a set of verbs) it can generate on them with its behaviors. Different from appearance-based studies that directly link the appearances of objects to nouns and adjectives, we first predict the affordances of an object through a set of Support Vector Machine classifiers which provided a functional view of the object. Then, we learned the mapping between these predicted affordance values and nouns and adjectives. We evaluated and compared a number of different approaches towards the learning of nouns and adjectives on a small set of novel objects. The results show that the proposed method provides better generalization than the appearance-based approaches towards learning adjectives whereas, for nouns, the reverse is the case. We conclude that affordances of objects can be more informative for (a subset of) adjectives describing objects in language. © 2012 Springer-Verlag

    Neurochemical metabolites in prefrontal cortex in patients with mild/moderate levels in first-episode depression

    Get PDF
    Background: Previous studies have determined the neurochemical metabolite abnormalities in major depressive disorder (MDD). The results of studies are inconsistent. Severity of depression may relate to neurochemical metabolic changes. The aim of this study is to investigate neurochemical metabolite levels in the prefrontal cortex (PFC) of patients with mild/moderate MDD. Methods: Twenty-one patients with mild MDD, 18 patients with moderate MDD, and 16 matched control subjects participated in the study. Patients had had their first episode. They had not taken treatment. The severity of depression was assessed by the Hamilton Rating Scale for Depression (HAM-D). Levels of N-acetyl aspartate (NAA), choline-containing compounds (Cho), and creatine-containing compounds (Cr) were measured using proton magnetic resonance spectroscopy (1H-MRS) at 1.5 T, with an 8-cm3 single voxel placed in the right PFC. Results: The moderate MDD patients had lower NAA/Cr levels than the control group. No differences were found in neurochemical metabolite levels between the mild MDD and control groups. No correlation was found between the patients' neurochemical metabolite levels and HAM-D scores. Conclusion: Our findings suggest that NAA/Cr levels are low in moderate-level MDD in the PFC. Neurochemical metabolite levels did not change in mild depressive disorder. Our results suggest that the severity of depression may affect neuronal function and viability. Studies are needed to confirm this finding, including studies on severely depressive patients. © 2013 Sözeri-Varma et al, publisher and licensee Dove Medical Press Ltd

    Wheat and hazelnut inspection with impact acoustics time-frequency patterns

    Get PDF
    Kernel damage caused by insects and fungi is one of the most common reason for poor flour quality. Cracked hazelnut shells are prone to infection by cancer producing mold. We propose a new adaptive time-frequency classification procedure for detecting cracked hazelnut shells and damaged wheat kernels using impact acoustic emissions recorded by dropping wheat kernels or hazelnut shells on a steel plate. The proposed algorithm is based on a flexible local discriminant bases (F-LDB) procedure. The F-LDB method combines local cosine packet analysis and a frequency axis clustering approach which supports individual time and frequency band adaptation. Discriminant features are extracted from the adaptively segmented acoustic signal, sorted according to a Fisher class separability criterion, post processed by principal component analysis and fed to linear discriminant. We describe experimental results that establish the superior performance of the proposed approach when compared with prior techniques reported in the literature or used in the field. Our approach achieved classification accuracy in paired separation of undamaged wheat kernels from IDK, Pupae and Scab damaged kernels with 96%, 82% and 94%. For hazelnuts the accuracy was 97.1%

    Identification of damaged wheat kernels and cracked-shell hazelnuts with impact acoustics time-frequency patterns

    Get PDF
    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with a PC-based data acquisition system. These signals were segmented with a flexible local discriminant bases (F-LDB) procedure in the time-frequency plane to extract discriminative patterns between damaged and undamaged food kernels. The F-LDB procedure requires no prior knowledge of the relevant time or frequency indices of the impact acoustics signals for classification. The method automatically finds all crucial time-frequency indices from the training data by combining local cosine packet analysis and a frequency axis clustering approach, which supports individual time and frequency band adaptation. Discriminant features are extracted from the adaptively segmented acoustic signal, sorted according to a Fisher class separability criterion, post-processed by principal component analysis, and fed to a linear discriminant classifier. Experimental results establish the superior performance of the proposed approach when compared to prior techniques reported in the literature or used in the field. The new approach separated damaged wheat kernels (IDK, pupal, and scab) from undamaged wheat kernels with 96%, 82%, and 94% accuracy, respectively. It also separated cracked-shell hazelnuts from those with undamaged shells with 97.1% accuracy. The adaptation capability of the algorithm to the time-frequency patterns of signals makes it a universal method for food kernel inspection that can resist the impact acoustic variability between different kernel and damage types. 2008 American Society of Agricultural and Biological Engineers
    corecore