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Abstract. This article studies how a robot can learn nouns and ad-
jectives in language. Towards this end, we extended a framework that
enabled robots to learn affordances from its sensorimotor interactions,
to learn nouns and adjectives using labeling from humans. Specifically,
an iCub humanoid robot interacted with a set of objects (each labeled
with a set of adjectives and a noun) and learned to predict the effects (as
labeled with a set of verbs) it can generate on them with its behaviors.
Different from appearance-based studies that directly link the appear-
ances of objects to nouns and adjectives, we first predict the affordances
of an object through a set of Support Vector Machine classifiers which
provided a functional view of the object. Then, we learned the mapping
between these predicted affordance values and nouns and adjectives. We
evaluated and compared a number of different approaches towards the
learning of nouns and adjectives on a small set of novel objects.

The results show that the proposed method provides better generaliza-
tion than the appearance-based approaches towards learning adjectives
whereas, for nouns, the reverse is the case. We conclude that affordances
of objects can be more informative for (a subset of) adjectives describing
objects in language.
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1 Introduction

Humanoid robots are expected to be part of our daily life and to communi-
cate with humans using natural language. In order to accomplish this long-term
goal, such agents should have the capability to perceive, to generalize and also
to communicate about what they perceive and cognize. To have the human-
like perceptual and cognitive abilities, an agent should be able (i) to relate its
symbols or symbolic representations to its internal and external sensorimotor
data/experiences, which is mostly called the symbol grounding problem [1] and
(ii) to conceptualize over raw sensorimotor experiences towards abstract, com-
pact and general representations. Problems (i) and (ii) are two challenges an
embodied agent faces and in this article, we focus on problem (i).
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The term concept is defined by psychologists [2] as the information associated
with its referent and what the referrer knows about it. For example, the concept
of an apple is all the information that we know about apples. This concept
includes not only how an apple looks like but also how it tastes, how it feels
etc. The appearance related aspects of objects correspond to a subset of noun
concepts whereas the ones related to their affordances (e.g., edible, small, round)
correspond to a subset of adjective concepts.

Affordances, a concept introduced by J. J. Gibson [3], offers a promising so-
lution towards symbol grounding since it ties perception, action and language
naturally. J. J. Gibson defined affordances as the action possibilities offered by
objects to an agent: Firstly, he argued that organisms infer possible actions that
can be applied on a certain object directly and without any mental calculation.
In addition, he stated that, while organisms process such possible actions, they
only take into account relevant perceptual data, which is called as perceptual
economy. Finally, Gibson indicated that affordances are relative, and it is neither
defined by the habitat nor by the organism alone but through their interactions
with the habitat.

In our previous studies [4J5], we proposed methods for linking affordances to
object concepts and verb concepts. In this article, we extend these to learn nouns
and adjectives from the affordances of objects.

Using a set of Support Vector Machines, our humanoid robot, iCub, learns the
affordances of objects in the environment by interacting with them. After these
interactions, iCub learns nouns and adjectives either (i) by directly linking ap-
pearance to noun and adjective labels, or (ii) by linking the affordances of objects
to noun and adjective labels. In other words, we have two different approaches
(appearance-based and affordance-based models) for learning nouns and adjec-
tives, which we compare and evaluate. Later, when shown a novel object, iCub
can recognize the noun and adjectives describing the object.

2 Related Studies

The symbol grounding problem in the scope of noun learning has been studied by
many. For example, Yu and Ballard [6] proposed a system that collects sequences
of images alongside speech. After speech processing and object detection, objects
and nouns inside the given speech are related using a generative correspondence
model. Carbonetto et al. [7] presented a system that splits a given image into
regions and finds a proper mapping between regions and nouns inside the given
dictionary using a probabilistic translation mode similar to a machine translation
problem. On another side, Saunders et al. [§] suggested an interactive approach
to learn lexical semantics by demonstrating how an agent can use heuristics to
learn simple shapes which are presented by a tutor with unrestricted speech.
Their method matches perceptual changes in robot’s sensors with the spoken
words and trains k-nearest neighbor algorithm in order to learn the names of
shapes. In similar studies, Cangelosi et al. [910] use neural networks to link
words with behaviours of robots and the extracted visual features.
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Based on Gibson’s ideas and observations, Jahin et al. [II] formalized affor-
dances as a triplet (see, e.g., [I2/I3I14] for similar formalizations):

(07 b7 f)7 (1)

where f is the effect of applying behaviour b on object 0. As an example, a
behaviour biig that produces an effect fiifreq On an object oy, forms an affor-
dance relation (0cup, biift, fiifted)- Note that an agent would require more of such
relations on different objects and behaviours to learn more general affordance
relations and to conceptualize over its sensorimotor experiences.

During the last decade, similar formalizations of affordances proved to be very
practical with successful applications to domains such as navigation [I5], ma-
nipulation [T6JI7JI8ITI20], conceptualization and language [5l4], planning [I§],
imitation and emulation [T2/I8/4], tool use [2II22/T3] and vision [4]. A notable
one with a notion of affordances similar to ours is presented by Montesano et
al. [23124]. Using the data obtained from the interactions with the environment,
they construct a Bayesian network where the correlations between actions, enti-
ties and effects are probabilistically mapped. Such an architecture allows action,
entity and effect information to be separately queried (given the other two in-
formation) and used in various tasks, such as goal emulation.

In this article, our focus is linking affordances with nouns and adjectives. In
addition to directly linking the appearance of objects with nouns and adjectives,
we learn them from the affordances of objects and compare the two approaches.

3 Methodology

3.1 Setup and Perception

We use the humanoid robot iCub to demonstrate and assess the performance of
the models we develop.

iCub perceives the environment with a Kinect sensor and a motion capture
system (VisualEyez VZ2). In order to simplify perceptual processing, we assumed
that iCub’s interaction workspace is dominated by an interaction table. We use
PCL[25] to process raw sensory data. The table is assumed to be planar and is
segmented out as background. After segmentation, the point cloud is clustered
into objects and the following features extracted from the point cloud represent
an object o (Eq. [I):

— Surface features: surface normals (azimuth and zenith angles), principal cur-
vatures (min and max), and shape index. They are represented as a 20-bin
histogram in addition to the minimum, maximum, mean, standard deviation
and variance information.

— Spatial features: bounding box pose (X, y, z, theta), bounding box dimensions
(x, ¥, z), and object presence.
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Fig. 1. Overview of the system. iCub perceives the environment and learnes the affor-
dances. From either the perceptual data or the affordances, it learns different models

for learning nouns and affordances.

3.2 Data Collection

The robot interacted with a set of 35 objects of vari-
able shapes and sizes, which are assigned the nouns
“cylinder”, “ball”, “cup”, “box” (Fig. ).

The robot’s behaviour repertoire B contains six be-
haviors (b1, ..., be - Eq. [l): push-left, push-right, push-
forward, pull, top-grasp, side-grasp. iCub applies each
behaviour b; on each object 0; and observes an effect

o = o, — 0;, where 0} is the set of features extracted
from the object after behaviour b; is applied. After
each interaction epoch, we give an appropriate effect
label E}, € £ to the observed effect fgf, where E can
take values moved-left, moved-right, moved-forward,
moved-backward, grasped, knocked, disappeared, no-
changeEI. Thus, we have a collection of {oi,bj,ng},

including an effect label Egj for the effect of applying
each behaviour b; to each object o;.

3.3 Learning Affordances

(c) balls

(d)

ders

cylin-

Fig. 2. The objects in our

dataset

Using the effect labels E € £, we train a Support Vector Machine (SVM) clas-
sifier for each behavior b; to learn a mapping M, : O — £ from the initial

! The no-change label means that the applied behavior could not generate any notable
change on the object. For example, iCub cannot properly grasp objects larger than
its hand, hence, the grasp behaviour on large objects do not generate any change.
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representation of the objects (i.e., O) to the effect labels (£). The trained SVMs
can be then used to predict the effect (label) EZ* of a behavior b, on a novel
object o; using the trained mapping My, . Before training SVMs, we use Re-
liefF feature selection algorithm [26] and only use the features with important
contribution (weight > 0) to training.

3.4 Adjectives

We train SVMs for learning the adjectives of objects from their affordances (see
Fig. ). We have six adjectives, i.e., A = {‘edgy’-‘round’; ‘short’-‘tall’, ‘thin’-
‘thick’}, for which we require three SVMs (one for each pair). We have the
following three adjective learning models:

— Adjective learning with explicit behavior information (Ass-AL):
In the first adjective learning model, for learning adjectives a € A, we use
the trained SVMs for affordances (i.e., My in Sect. B3)) to acquire a 48-
dimensional space, V; = (B, .. El, . EY, .. El), where Efj is the
confidence of behaviour b; producing effect E; on the object 0. We train an
SVM for learning the mapping M}l : V; — A.

— Adjective learning without explicit behavior information (As-AL):
In the second adjective learning model, for learning adjectives a € A, we use
the trained SVMs for affordances to acquire an 8-dimensional affordance
vector, Vo = (p(E1), ..., p(Es)), where p(E;) is the maximum SVM confidence
of a behaviour b; leading to the effect E; on object o. From Vs, we train an
SVM for learning the mapping M2 : V, — A.

— Simple adjective learning (SAL):
In the third adjective learning model, we learn M3 : O — A directly from
the appearance of the objects.

After learning, iCub can predict the noun and adjective labels for a novel object

(Fig. B)).

3.5 Nouns

We train one SVM for nouns N' = {‘ball’; ‘cylinder’, ‘box’;, ‘cup’}, for which
we have 413 instances.
Similar to adjectives, we have three models:

— Noun learning with explicit behavior information (A4s-NL):

Similar to Ass-AL, we train an SVM for learning the mapping M? : V; — N.
— Noun learning without explicit behavior information (As-NL):

Similar to Ag-AL, we train an SVM for learning the mapping M2 : Vo — N,
— Simple noun learning (SNL):

Similar to SAL, we train an SVM for learning the mapping M3 : O — N

directly from the appearance of the objects.
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CYLINDER ( 87% ) o

Fig. 3. After learning nouns and adjectives, iCub can refer to an object with its higher
level representations or understand what is meant if such representations are used by
a human

4 Results

The prediction accuracy of the trained SVMs that map each behaviour b; on an
object to an effect label (i.e., Mp, : O — &)

is as follows: 90% for top-grasp, 100% for side-grasp, 96% for pull, 100% for
push-forward, 92% for push-left and 96% for push-right.

4.1 Results on Adjectives

Using Robust Growing Neural Gas [27], we clustered the types of dependence
between each adjective and the effects of the behaviours into Consistently Small
(-), Consistently Large (4+) and Highly Variant (*). These dependencies allow
iCub to relate adjectives with what it can and cannot do with them. Table [
shows these dependencies for the model Ayg-AL (M}) introduced in Sect. 3.4
We see from the table what behaviours can consistently generate which effects
on which types of objects (specified with their adjectives). For example, with a

Table 1. The dependence between adjectives and affordances for the model Ass-AL
(M}). TG: Top Grasp, SG: Side Grasp, PR: Push Right, PL: Push Left, PF: Push
Forward, PB: Pull. For each behavior, there are eight effect categories: a: Moved Right,
b: Moved Left, ¢: Moved Forward, d: Pulled, e: Knocked, f: No Change g: Grasped, h:
Disappeared.

Adjective TG SG PR PL PF PB
abede fgh abedefgh abedefgh abedefgh abedefgh abedefgh
Edgy  -——-- +o= skok— k———kk—+ —k——kk—+ ———kkk—+ ———k++—+
Round *k— e s L s T S
Short *ok— o= dmm—kkmd —m— kot ——— bkt ——— kot
Tall ~— --———- Hk— ————— k= K———tk—t —k——tk—t ———ktt—k ———k++—xk
Thin  ----- kk— ————— kk— k———dk—+ —k——Fk—+ ———k+k—+ ————++—+

Thick  --———- o Kk— k———kk—k —k——kk—k ———kk+—k ———tk+—%
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consistently large probability, the robot would generate no change effect on edgy
or thick objects when top grasp behavior was applied. Furthermore, the short
and tall objects show a clear distinction in response to pushing behaviors (tall
objects have a high probability to be knocked while short objects simply get
pushed).

The dependencies for the no-
explicit-behavior model Ag-AL (M?2) Table 2. The dependence between adjec-

is in Table We see from the ta- tives and affordances for the model Ag-
2 . ; .
ble that round objects have a con- AL (M,). MR: Moved Right, ML: Moved

. . e Left, MF: Moved Forward, P: Pulled, K:
sistently high probability to generate Knocked, NC: No Change, G: Grasped, D:

disappeared effect, whereas edgy ob-
jects do not have such consistency.
Furthermore, tall objects have consis- Adjective MR ML MF P K NC G D
tently low probabilities in obtaining Eday ok x4 4o

: *
moved-left, -right, -forward or pulled Round % k% ok ok 4+ + +
effects. Almost all effects can be gen- Short %

Disappeared.

) . . . *  ox ok x + + +
erated on thin objects with consis-
. ol Tall - - = —+ + ++
tently high probability. .
Th . bet the dif Thin * + ++ + ++
e comparison between the dif- . % ko x ok k44

ferent adjective learning methods is
displayed in Table B which displays
the average 5-fold cross-validation accuracies. We see that the explicit-behavior
model (Ag-AL) performs better than Ag-AL and SAL models. The reason that
Ag-AL is worse than the other methods is eminent in Table [2, where we see
that different adjective categories end up with similar descriptor vectors, losing
distinctiveness. On the other hand, the Ayg-AL model that has learned adjec-
tives from the affordances of objects performs better than directly learning SAL
model.

An important point is whether ad- Table 3. Avg. prediction results for the
jectives should include explicit be- three adjective models in Sect. 3.4l
haviour information (i.e., A4s-AL

vs. Ag-AL). Theoretically, the per- Aus-AL Ag-AL SAL
formance of these models should My M M
converge while one-to-one, unique Edgy-Round 87%  72% 89%
behavior-to-effect relations dominate Short-Tall 93%  95% 89%
the set of known affordances. In such Thin-Thick  95%  72% 91%

cases, the behavior information would

be redundant. On the other hand, with a behavior repertoire that may pose
many-to-one-effect mappings, behavior information must be taken into account
to obtain more distinguishable adjectives.

Results on Adjectives of Novel Objects. Table [ shows the predicted ad-
jectives from the different models on novel objects. We see that, for adjectives,
M. is better in naming adjectives than M?2. For example, M? mis-classifies
object-5 as edgy, object-7 as thin and object-1 as thick whereas M correctly
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Table 4. Predicted adjectives for novel objects using 3 different models (bold labels
denote correct classifications)

1D ObJeCt A48 AL Ag—AL SAL
M2 M}
edgy (54 %) edgy (89 %) edgy (89 %)
short (97 %) short (91 %) short (55 %)
thin (59 %) thick (52 %) thin (52 %)
round (77 %) round (90 %) edgy (79 %)
short (77 %) short (91 %) short (58 %)
thin (89 %) thin (67 %) thin 67 %
edgy (63 %) round (72 %) edgy (64 %)
short (94 %)  short (92 %)  tall (67 %)
thin (96 %) thin (72 %) thin 84 %
round (84 %) edgy (%94) round (77 %)
4 short (98 %) short (% 87) short (68%)
thick (91 %) thin (% 68)  thin ( 62 %)
round (84 %) edgy (% 81) round (89 %)
short (97 %) short (% 93) short (67 %)
thick (95 %) thick (% 59) thick (58 %)
edgy (84 %) edgy (79 %) edgy (79 %)
short (98 %) short (80 %) tall (55 %)
thin (92 %) thin (79 %) thick (62 %)
edgy (62 %) edgy (52 %) round ( 84 %)
short (98 %) short (93 %) short (54 %)
thick (78 %) thin (53 % ) thick (68 %)
round (72 %) round (69 %) edgy (89 %)
short (98 %) short (95 %) short (67 %)
thick (79 %) thick (64 %) thick (52 %)

names them. On some objects (e.g., object-3), where there are disagreements be-
tween the models, correctness cannot be evaluated due to the complexity of the
object. If we look at the direct mapping from objects’ appearance to adjectives
(M3), we see that it misclassifies object-7 as round, object-6 as tall and objects
2 and 8 as edgy.

4.2 Results on Nouns

For the three models trained on nouns (Sect. B3], we get the following 5-fold
cross-validation accuracies: Asg-NL: 87.5%, Ag-NL: 78.1% and SNL: 94%. We see
that, unlike the case in adjectives, directly learning the mapping from appearance
to nouns performs better than using the affordances of objects. This suggests
that the affordances of the objects (used in our experiments) are less descriptive
for the noun labels we have used. The dependency results for nouns (similar to
the ones in adjectives shown in Tables [l and ) are not provided for the sake of
space.
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Results on Nouns of Novel Objects. Table[H shows the results obtained on
novel objects. Unlike the case in adjectives, the simple learner (SNL) significantly
outperforms the Asg-NL and Ag-NL models. Hence, we conclude that the set of
nouns (cup, cylinder, box, ball) we have are more of appearance-based.

5 Conclusion Table 5. Noun prediction for novel objects using

3 different models (see Table @ for pictures of the
We proposed linking affor-  gpjects)

dances with nouns and ad-
jectives. Using its interac- p Aus-NL Ag-NL SNL

tions with the objects, iCub |\ 74 %) cylinder (42 %)  box (97 %)
learned the affordances of o ., (83 %) ball (44 %) ball (97 %)
the objects and from these, 3 .ijinder (87 %) cylinder (39 %) cylinder (95 %)
built different types of SVM 4 pox (94 %)  cylinder (38 %) cylinder (86 %)
models for predicting the 5  box (89 %) cylinder (35 %) box (94 %)
nouns and the adjectives for 6  cup (89 %) cylinder (44 %) box (46 %)
the objects. We compared 7  box (89 %) box (32 %) box (93 %)
the results of learning nouns 8 (89 %) (98 %)
and adjectives with classifiers
that directly try to link nouns and adjectives with the appearances of objects.
We showed that, by using learned affordances, iCub can predict adjectives
with more accuracy than the direct mode. However, for the nouns, direct meth-
ods are better. This suggests that a subset of adjectives describing objects in a
language can be learned from the affordances of objects. We also demonstrated
that explicit behavior information in learning adjectives can provide better rep-
resentations. It is important to note that these findings are subject to the sen-
sorimotor limitations of the robot, which are maintained by the number and
the quality of the behaviors and the properties of the perceptual system. For
example, had we included a behavior to try to fill objects with some liquid, the
cups concept would be much easier to be formed and predicted. A sample video

footage can be viewed at http://youtu.be/DxLFZseasYA

cup cylinder (44 %) cup
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