
Multi-Chip Implementation of a High-Speed Sorting Engine Based on
Rank-Ordering

Ö.Kalkan M.S. Hanay İ. Hatırnaz and Y. Leblebici
Sabancı University California Institute of Technology Swiss Federal Institute of Technology(EPFL)
Graduate School Pasadena, CA Microelectronic Systems Laboratory (LSM)
Kocaeli, Turkey 91125 USA Lausanne, CH-1015, Switzerland

ozlem@su.sabanciuniv.edu selim@its.caltech.edu {ilhan.hatirnaz,yusuf.leblebici}@epfl.ch

Abstract— A multi-chip-module (MCM) implementation of a
binary sorting engine is presented. Previously, a bit-serial sorter
architecture was proposed, which is able to sort up to 63 16-bit
numbers in 78 clock cycles, which includes the time spent for the
serial data input. This architecture was put on silicon, using a con-
ventional 0.35µm technology, resulting in an area of 13 mm

2 and
an operation at a clock frequency of approximately 200 MHz. The
proposed sorting engine consists of individual sorter units and a
control block, which takes care of the data transfer between these
units.

I. INTRODUCTION

The task of sorting is an expensive operation in terms of area-
time complexity; software-based solutions require word-level
sorting and can become computationally intensive. The overall
complexity of hardware-based solutions usually increases very
rapidly with the size of the input vector set and with the bit-
length of the input vectors.

In this paper, the implementation of a parallel sorting engine
is proposed. This sorting engine is built using individual local
sorters, which are able to process up to 127 vectors at a time. A
control logic is developed to synchronize the local sorters and
provide safe data-exchange among individual sorters, which is
dictated by the parallel sorting algorithm described below.

A summary of the previous work on the local sorting engine
and the algorithm used in realizing the parallel sorting engine
are given in Section II. The following two sections, Section
III. and IV. talk about the proposed system architecture and its
hardware realization.

II. SORTING ALGORITHM

A. Previous Work & Background

The main building block of the proposed parallel sorting ar-
chitecture is rank-ordering based sorter block [1] [2], for which,
a bit-serial algorithm was chosen as the basis [3].

The overall architecture of the sorting engine is shown in Fig-
ure 1. The flow of data through the modular sorter core is being
regulated by complementary input and output shift register ar-
rays, which are used to stagger indidivual bit-planes of each
input vector to enable bit-level pipelined operation. The con-
trol logic is responsible for regulating the data circulation path,
and for applying the rank selection signals to the individual bit-
planes, in ascending or descending order. The fact that each
individual bit-plane is capable of processing a different rank
at any given time significantly increases the overall efficiency
of this architecture. In a typical sorting run, the control logic
simply requests each bit-plane to process a different rank in
each clock cycle, either beginning from the maximum rank and
descending, or beginning from the minimum rank and ascend-

ing. It was demonstrated that this sorting engine is capable of
producing a fully-sorted output vector set in any rank order in
(m+n-1) clock cycles, i.e., in linear time, where, ’m’ is the num-
ber of vectors to be sorted and ’n’ is the bit-length, the number
of bits used to represent each input vector.

INPUT

SHIFT

REGISTER

ARRAY

used to obtain

data vectors.

bit−wise staggered

used to convert bit−wise

staggered output vectors

back to normal.

CONTROL
BLOCK

Control feedback

to the userfrom the user

to the majority gates

Control signals

Rank control bus

sorter data

input bus

OUTPUT

SHIFT

REGISTER

ARRAY

sorter data

output bus

DataMUX

control bus

SORTER CORE

Sorter slice − MSB

Sorter slice − MSB2

Sorter slice − MSB3

Sorter slice − LSB

Fig. 1. Top-level blocks in the sorter architecture. This block is one of the main
building blocks of the proposed parallel sorting architecture.

The bit-serial operation of the algorithm suggests a sim-
ple bit-level pipelined data architecture, consisting of data
modifier-propagator block (ROF cells) to handle fine-grained
data selection, and the majority decision blocks (majority func-
tion) to determine the output bits. The modular two dimen-
sional array architecture consisting of these two major blocks
enables fully scalable construction of structures of arbitrary
window size and bit-length. The bit-lenght dictates the number
of majority decision gates (rows or slices), whereas the window
size determines the number of ROF cells driving one of these
majority gates in one slice (columns). The structure of one row
is shown in Figure 2.

The programmable majority function is the key operation that
must be performed in each row. This function also determines
the overall operation speed (i.e., the clock frequency), since
the m-input majority function must be performed in each clock
cycle. The majority gate has been realized with fully combina-
tional parallel counter, which consists of full adders connected
in a tree network and an output comparator.

A sorting engine based on the architecture described above
for processing 127 input vectors of 16-bits has been realized
using conventional 0.35µm technology. The architecture con-
sists of 16 rows, where each row is capable of processing 127
bits simultaneously. This 127x16 sorting engine is the main
building block of the proposed larger parallel-sorting architec-
ture.

Q

D

D
F

F

Select signal
from the

control block

shift registers
from the input
Shifted data

Propagating data

from the bit-slice

Select signal
for the next

lower bit-slice

to the bit-slice

Shifted data

majority gate

Input bus to the

through the ROF Cells

Actual input data flow

GATE

MAJORITY

Actual Data output of
the last ROF Cell

RANK
REG

Rank bus
from the

control block

Bit-slice output

shift register
to the output

majority gateOutput of the
(fed back to the ROF Cells)

Rank for the

bit-slice
next lower

B

A

Y

MUX

S

CELL
ROF

CELL
ROFROF

CELL

Fig. 2. The block-level structure and the signal flow in one sorter bit-slice.

B. Neighborhood-Sort Algorithm

To be able to process larger numbers of input vectors, there
is a need for an algorithm, which would make smaller sorter
blocks run in parallel and provide that a large number of input
vectors are sorted either in ascending or in descending order.
Among different parallel sorting algorithms, the neighborhood
sort algorithm is chosen for its simplicity and its applicability
in the forementioned sorting architecture [4]. Figure 3 shows
an example for how the algorithm works. In this example, the
goal is to sort 12 integers (from 1 to 12), which are given in
a random order, using three sorting blocks, each of which, is
capable of sorting up to four numbers in one step. The al-
gorithm is mainly a loop of individual sorting of the data in
each sorter block, transferring the highest “k” numbers (k =2 in
the given example) to the neighboring block (the block at the
right), do individual sorting again with the new block contents
and then providing the “k” smallest numbers to the neighbor at
the opposite side (the block at the left side), until the sorting is
completed. This loop dictates that there has to be a check step
after every individual sorting of each block contents to see if
the numbers are already in the desired order (min-to-max in the
example).

In the example, each sorter first sorts its contents and then
transfer the two largest numbers to the neighboring sorter block
(at the right side). The right-most block stores its two largest
numbers for a later step, which are not taken into account just
for this one step; and it gets another two numbers from the
neighboring block to its left. After the next sort operation,
this time each sorter block sends its two smallest number to
its neighbor at its left. Also, the two numbers stored by the
right-most block are shifted inside that block and the sorting is
repeated again for each sorter block. This operation goes on
until all the numbers are sorted in the increasing order starting
from left going to right. As one can easily observe from Figure
3, to sort eight numbers in increasing order with three individ-
ual sorter blocks, took four sorting and four shifting operations.

Fig. 3. The operation of the neighborhood-sort algorithm.

Fig. 4. The implementation of the slightly-changed neighborhood-sort algo-
rithm as part of the proposed sorting architecture.

The proposed architecture employs a slightly changed version
of this algorithm, where, “k” possible smallest numbers (“0 0”)
are fed from the left side (where we assume that the sorter block
processing the minimum numbers is located) and “k” highest
possible numbers (represented with “F F”) are provided from
the right side (at which, we assume the sorter block that at the
end of the process will store the highest numbers, is located),
as seen in Figure 4. Whenever Sorter1 needs to transfer data
from Sorter2, its two ’0’s are thrown away, later when the data
is shifted right, Sorter1 recovers the zeros back. This change
in the algorithm makes all the sorting blocks act the same way
independent of their location and therefore eases the the job of
the control logic.

III. SYSTEM ARCHITECTURE

The modified neighborhood-sort algorithm dictates the need
for two main operations:

• Transfer of data from one sorter block to other.

• Sorting of the content of each sorter block.

The previous section presented a sorter block, which can han-
dle up to 127 16-bit input vectors. This block is used for im-
plementing each ’Sorter’ cell of the table shown in Figure 4.
Hence, each cell of the table corresponds to a sorter module of
127 input vectors at the implementation side.

The other main operation listed above, the transfer of data
among blocks, requires a data storage structure and a dedicated
control system to ensure the transferred data is received by the
correct sorter module. The implementation of the data trans-
fer is illustrated in Figure 5. It is shown that the sorter block
receives half of its input vectors from one of its neighboring
blocks, either from the left one or from the right depending on
the type of data being transferred, and the other half consists of
the vectors which were sorted during the previous step by the
block itself. At the same time, each sorter module sends corre-

Communication Control output

CONTROL

FILE
REGISTER

COMMUNICATION

CONTROLLER

Data Selection
Multiplexers

Data to
neighbors

Control
inputs

SORTER
CORE

ISRA

OSRA

Data from left

Data from right

Own data

SORTER

Fig. 5. Implementation of the data transfer among neighboring sorter blocks. ISRA and OSRA stand for Input and Output Shift Register Array, respectively.

sponding half of its sorted content to its neighbors, which will
be accepted only by the appropriate sorter module.

Assuming desired sorting order is from minimum to maxi-
mum, i.e., the maximum vector appears first at the output of
every sorter module, the corresponding data flow is given be-
low in Table I, including the number of clock cycles required
for each operation. It should be noted that the net effect of
such a scheme is to push the larger vectors to the rightmost
sorter modules and the smaller vectors to the leftmost sorter
modules, until the sorting operation is accomplished globally,
which is checked by the “Global check” routine. It can be seen
that the system operates in units of 143 clock cycles, which is
determined by the total number of registers that a input vec-
tor must be shifted through; 127 for storing the results of the
sorting operation, plus, 16 to hold them inside the correspond-
ing block during the global check. One complete round takes
4 × 143 = 572 clock cycles, after which, another round starts.

The so-called “global check” step is used to check if at any
moment all the vectors are sorted in the desired order. Under
the assumption that a sorting system has ’n’ sorter modules, the
condition to confirm the finish of the global sorting operation is
the synchronous correctness of all the local conditions below:

min (Sorter #1) > max (Sorter #2)

min (Sorter #2) > max (Sorter #3)

· · · · · ·

min (Sorter #(n − 1)) > max (Sorter #n)

IV. HARDWARE REALIZATION

The generic 127 x 16-bit sorter core has been synthesized,
and mapped on a 0.35 um CMOS standard cell library includ-
ing the register blocks, and the control-communication circuits.
The structure consists of 16 individual rows (see Figure 1), each
corresponding to one bit-slice. Each row contains 127 ROF
cells that are responsible for the low-level implementation of
the bit-serial sorting algorithm. The critical path was identified
as the 127-bit majority decision circuit that needs to operate for
each bit slice concurrently. It was found that the worst case in-
put to output delay of this 127-bit majority decision block can

TABLE I
REGULAR OPERATION OF THE SYSTEM.

NOTE THAT THE VALUES FOR CLOCK CYCLES ARE VALID ONLY

FOR THE CASE, WHERE THE SYSTEM EMPLOYS SORTER MODULES

OF 127 VECTORS.
of clock Operation Operation

cycles in registers in sorters
0-63 Shift in data Produce the

from left maximum half
64-127 Shift in own data Produce the

minimum half
127-143 Shift data& Start filling ISRA

Global check
143-286 null Shift data

inside core
286-349 Shift in own data Produce max half
349-413 Shift in data Produce the

from right minimum half
413-429 Shift data& Start filling ISRA

Global check
429-572 null Shift data

inside core

be optimized by using the procedural description of the ma-
jority function. This results in a worst case delay of approxi-
mately10 ns for the majority block, allowing a clock frequency
of 100 MHz for the overall system.

The standard cell realization of one sorter core block is shown
in Figure 6 after placement and routing using Silicon Ensem-
ble. The dimensions of the block are 845µm x 820µm, in-
cluding the register files and the local control unit. Once the
basic building block of the system is generated, a much larger-
capacity parallel sorting engine can be constructed by linking
a number of such units in cascade configuration, as depicted
in Figure 7 for 16 individual units. The key point is that the
capacity of the system can be arbitrarily increased by simply at-
taching additional units, limited only by the clock distribution
network and the data transmission speed between the modules.

To achieve a cost-effective solution, it was decided to place 4
individual sorter units on each chip, which results is a relatively
small chip size (using 0.35 um CMOS technology) of approxi-
mately 25mm2 including the I/O pads. To reduce the cost even

Fig. 6. Standard-cell layout view of the 127x16 sorting engine.

Fig. 7. The top-level placement of the sorter modules and the direction of the
data path.

more, only a single layer of conductor is used in MCM and
much effort is spent on ensuring that there isn’t any overlap-
ping paths. Utilizing 16 such chips in a cascade configuration
produces an aggregate sorting capacity of 8k x 16-bit (= 128
kbits). This capability is significantly higher than those of pre-
viously reported sorting arrangements [5], [6].

The control circuitry of the sorter is designed in a way, which
makes it possible to send data to the MCM sorter and to receive
data from it. This communication can be realized by connect-
ing the sorter to a serial port and writing an assembly code to
take care of the communication.

V. CONCLUSIONS

A multi-chip implementation of parallel sorting engine is pre-
sented. The proposed architecture is based on parallel process-
ing of a large number input vectors by a number of individual
sorting engines, which exchange data after finishing the local
sorting operation. The design given in this paper has a capacity
of sorting 8k input vectors, each of which is 16 bits.

ACKNOWLEDGMENT

The authors thank Ms. Tug̃ba Demirci of Cypress Semicon-
ductors Istanbul Design Center, for her invaluable contributions
in the early stages of this research.

REFERENCES

[1] İ. Hatırnaz, Y. Leblebici, “Scalable Binary Sorting Architecture Based on
Rank-Ordering”, Proceedings of ISPACS 2000, Hawaii, October 2000.

[2] T. Demirci, İ. Hatırnaz, Y. Leblebici, “CMOS Realization of a Scalable
High-Performance Binary Sorting Engine Suitable for Embedded Appli-
cations”, ASIC/SOC 2000, Rochester, NY, September 2002.

[3] B.K. Kar, D.K. Pradhan, “ A New Algorithm for Order Statistic and Sort-
ing”, IEEE Trans. on Signal Proc., vol. 41, pp 2688-2694, August 1993.

[4] A. Park and K. Balasubramanian, “Improved Sorting Algorithms for Par-
allel Computers,” Proceedings of 15th Annual Conference on Computer
Science, 1987, pp. 239-244.

[5] W.K. Lam and C.K. Li, “Binary sorter by majority gate,” IEE Electronic
Letters, Vol. 32, July 1996.

[6] C.C. Lin, C.J. Kuo, “Fast response 2-D rank order algorithm by using
max-min sorting network,” International Conference on Image Process-
ing 1996, Vol. 1, pp. 403-406.

