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IDENTIFICATION OF DAMAGED WHEAT KERNELS 
AND CRACKED-SHELL HAZELNUTS WITH 

IMPACT ACOUSTICS TIME-FREQUENCY PATTERNS

N. F. Ince,  I. Onaran,  T. Pearson,  A. H. Tewfik,  A. E. Cetin,  H. Kalkan,  Y. Yardimci

ABSTRACT. A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals
for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate,
and the resulting impact acoustic signals were recorded with a PC-based data acquisition system. These signals were
segmented with a flexible local discriminant bases (F-LDB) procedure in the time-frequency plane to extract discriminative
patterns between damaged and undamaged food kernels. The F-LDB procedure requires no prior knowledge of the relevant
time or frequency indices of the impact acoustics signals for classification. The method automatically finds all crucial
time-frequency indices from the training data by combining local cosine packet analysis and a frequency axis clustering
approach, which supports individual time and frequency band adaptation. Discriminant features are extracted from the
adaptively segmented acoustic signal, sorted according to a Fisher class separability criterion, post-processed by principal
component analysis, and fed to a linear discriminant classifier. Experimental results establish the superior performance of
the proposed approach when compared to prior techniques reported in the literature or used in the field. The new approach
separated damaged wheat kernels (IDK, pupal, and scab) from undamaged wheat kernels with 96%, 82%, and 94% accuracy,
respectively. It also separated cracked-shell hazelnuts from those with undamaged shells with 97.1% accuracy. The
adaptation capability of the algorithm to the time-frequency patterns of signals makes it a universal method for food kernel
inspection that can resist the impact acoustic variability between different kernel and damage types.

Keywords. Adaptive time-frequency analysis, Food kernel inspection, Impact acoustics, Kernel classification.

ood kernel damage caused by insects, fungi, and
mold is a major source of quality degradation. For
instance, Fusarium graminearum, a fungus found in
wheat, creates “scab” damage and may lead to

toxins known to cause cancer (Christensen and Meronuck,
1986). Internal insect infestation degrades the quality and
value of wheat and is one of the most difficult kernel defects
to detect. This type of kernel damage occurs when an adult
female insect chews a small hole in the kernel, deposits an
egg, and then seals the egg with a mixture of mucus. The egg
plug is the same color as the wheat surface, so it is nearly
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impossible to detect by visual inspection. When the egg
hatches, the insect larvae feeds on the kernel endosperm and
then exits the kernel by chewing an exit tunnel and forming
what is called an “insect-damaged kernel” (IDK). Insect
infestations cause grain loss by consumption, nutritional
losses, and degradation in the end-use quality of flour
(Pederson, 1992). Separation of damaged from undamaged
wheat kernels is crucial for quality and proper grading of
wheat loads. Therefore, the percentage of insect-damaged
kernels in the production/market is controlled by the USDA
and industry standards. For example, in the U.S., U.S. No. 1
to U.S. No. 5 grades only allow up to 31 damaged wheat
samples per 100 g. Damaged samples exceeding this number
are graded as U.S. Sample grade (USDA, 2008).

A similar problem occurs in hazelnut production.
Environmental  conditions and processing procedures may
decrease nut quality by causing cracks on the shell. Damage
to the shell of the nut kernel increases the likelihood of fungi
infecting the kernels, since the mold spores have unabated
access to the kernel. Fungal infestation can cause aflatoxin
formation, which is a type of mycotoxin that is linked to
various health problems including liver cancer (Dichter,
1984). Therefore, it is crucial to detect hazelnuts with
damaged shells and separate them from undamaged nuts.

In this study, two important food inspection problems are
addressed using a novel adaptive time frequency
segmentation technique:

� Detection of damaged wheat kernels.
� Detection of hazelnuts with cracked shell.

F
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IMPACT ACOUSTICS FOR FOOD INSPECTION
Because the proportion of damaged kernels is small

compared to the total number of undamaged wheat kernels,
a low false positive error rate (identification of an undamaged
kernel as damaged) is crucial for an economically feasible
detection system. Several methods have been studied to
tackle the problem of detecting insect-damaged wheat
kernels, including x-ray imaging (Karunakkaran et al.,
2003), NIR spectroscopy (Maghirang et al., 2003; Dowell et
al., 1998), and carbon dioxide measurements (Bruce et al,.
1982). However, these methods are slow, expensive, and do
not provide the required accuracy in classification. Hence,
these types of wheat kernel inspection methods have not
found widespread application in industry.

In hazelnut production, farmers separate the empty
hazelnuts from fully developed ones before selling the nuts.
A mechanical device using an air fan is utilized for this
purpose. The air fan removes immature or empty hazelnuts
with lower weight, and the remaining hazelnuts are accepted
as fully developed. This system is unable to remove the nuts
with cracked shells because hazelnuts with cracked shells
have weights and densities that are very similar to hazelnuts
with undamaged shells.

The drawback of these methods of wheat and hazelnut
inspection led researchers to explore new techniques.
Recently, impact acoustic emission has been proposed to
separate pistachios with closed shells from those with split
shells (Pearson, 2001). In this system, as depicted in figure 1,
the nuts are projected onto a steel plate and the resulting
acoustic signals are analyzed. With this method, the
classification accuracy was approximately 97% with a
throughput of 40 nuts per second. This same strategy was
applied to wheat inspection, and successful results were
obtained for detection of IDK from undamaged kernels
(Pearson et al., 2005). Although the mechanical structure was
similar, Pearson et al. (2005) reported that the signal features
used for pistachio classification, such as the integrated

absolute value of microphone output signal and the gradient
of the signal at manually selected time intervals, did not work
well in wheat inspection. They improved the system by
including a combination of time and frequency domain
features individually. To be more specific, variances and
maximum values extracted from short time windows were
used as time features. In addition, signal modeling was
performed with a three-step transformation. As an initial
step, the signal was rectified by computing its absolute value
at all time points. Then a non-linear filter replaced the center
data point with the maximum value in a seven-point window.
Finally, a non-linear estimation of the four parameters of the
Weibull function was implemented. These parameters were
used as features for classification. The frequency domain
features were: the frequency index corresponding to the peak
DFT magnitude of the signal, 30 normalized DFT
magnitudes centered about the peak DFT, the entire set of 128
DFT magnitudes, and the 32 magnitudes of the differential
spectrum. The reader is referred to Pearson et al. (2005) for
details. Although these feature combinations provided good
results for IDK separation, the authors also reported poor
results on other types of kernel damage, such as scab and
infested kernels at the pupal stage, where the insect was still
inside the kernel. The same impact acoustics based system
was also recently extended to separate cracked hazelnut
shells from undamaged ones (Kalkan and Yardimci, 2006)
and immature hazelnuts from fully developed hazelnuts
(Onaran et al., 2006). Specifically, Kalkan and Yardimci
(2006) reported a classification accuracy of 91.8% in cracked
and healthy hazelnut shell separation by using the energy in
the frequency subbands of impact acoustics.

The results of Pearson et al. (2005), Kalkan and Yardimci
(2006), and Onaran et al. (2006) emphasized the importance
of signal processing methods for the impact acoustic signal
to achieve higher accuracies in food kernel inspection. These
improvements were obtained by extracting frequency and
time domain features separately. Generally, a subset of these

Figure 1. Schematic of food kernel sorter based on acoustic emissions. This system was used for sorting pistachios and wheat kernels by Pearson (2001)
and Pearson et al. (2005).
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features was selected using traditional stepwise discriminant
analysis for classification. In the presence of variability of
acoustic waveforms due to different kernel damages, it is
cumbersome to extract relevant features and adapt them to
changing conditions.

The objective of this study was to investigate a detection
method for cracked hazelnuts and wheat kernel damage
based on an adaptive time-frequency (t-f) analysis of the
impact acoustic signals emitted by wheat kernels or hazelnut
shells when dropped from a fixed height onto a steel plate.
The proposed approach requires no prior knowledge of the
relevant time or frequency indices of the impact acoustics
signals. It implements an arbitrary time and frequency tiling
with a flexible local discriminant bases algorithm (Ince et al.,
2006) to find the most relevant indices automatically. This
algorithm is obtained by combining local cosine packet
(LCP) analysis (Mallat, 1999; Wickerhauser, 1994) with a
frequency axis clustering approach that supports individual
time and frequency band adaptation. The time and frequency
segmentation steps produce too many features. Furthermore,
these features are generally correlated. Therefore, the
adaptively extracted t-f features are processed by principal
component analysis to reduce the number of features and
combine correlated features. Finally, the PCA post-processed
feature set was classified with linear discriminant analysis.

MATERIAL AND METHODS
A schematic diagram describing the overall signal

processing and classification system is shown in figure 2. As
indicated previously, the time-frequency features extracted
from impact acoustic signals are used for the identification of
damaged wheat kernels and hazelnuts with cracked shells.
The time-frequency features are computed by windowing the
acoustic signal in adapted time segments and then applying
a spectral analysis to estimate the frequency spectrum. After
computing the features, they are sorted with Fisher’s
discriminative  criterion to select the most parsimonious ones
and post-processed by PCA. Finally, linear discriminant
analysis is used to identify damaged food kernel acoustics.
The next sections provide a detailed description of the data
acquisition system used to record the impact acoustics and
perform the signal processing steps.

IMPACT ACOUSTICS DATA ACQUISITION
The same experimental setup of Pearson et al. (2005) was

used to record the impact acoustics. A schematic of the
experimental  apparatus for singling wheat kernels and
hazelnuts, which consisted of dropping the nuts/kernels onto
the impact plate and then collecting the acoustic signals from
the impact, is shown in figure 1. A vibration feeder (F-TO-C,

FMC-Syntron, Homer City, Pa.) was used to transform the
wheat kernels into a single-file stream, which consisted of a
vibrating bulk hopper and a V-shaped steel trough. The wheat
kernels were impacted onto a polished stainless steel plate
with dimensions of approximately 75 × 50 × 100 mm. The
drop distance from the feeder to the impact plate was
400 mm, and the plate was inclined at 30°  above the
horizontal.  This angle was determined by trial and error in
order to prevent bounces. Flatter angles of incline produced
a stronger signal, but the kernels tended to bounce twice
before falling off of the plate. This was not conducive to
high-speed sorting.

A microphone (4939 L with 2669 L pre-amp, Bruel and
Kjaer North America, Norcross, Ga.), sensitive to
frequencies up to 100 kHz, was used to capture audible and
ultrasonic acoustic emissions from the impact of the wheat
kernels with the steel plate. The end of the microphone was
placed 25 mm from the point where kernels impacted the
plate. The microphone output was further amplified (2690
NEXAS, Bruel and Kjaer North America, Norcross, Ga.) at
1 V/Pa to ensure that the system had the required dynamic
range to capture the acoustic emissions. Microphone signals
were digitized using a sound card (Waveterminal 192X, Ego
Sys, Seoul, South Korea) at a sampling frequency of 192 kHz
with 16-bit resolution. This sound card does not have the
20 kHz low-pass filter that most consumer sound cards use.
The data acquisition was triggered using an optical sensor
(QS30LLPC, Banner Engineering Corp., Minneapolis,
Minn.). In the wheat kernel experiment, 600 undamaged
(UD), 600 IDK, 600 pupal, and 400 scab kernels were used.

To evaluate the performance of the proposed algorithm in
discrimination of cracked shell hazelnuts from undamaged
ones, the dataset of Kalkan and Yardimci (2006) was used. A
setup similar to that used for the wheat experiment was
constructed to record the hazelnut impact acoustic signals
with undamaged and cracked shells. A stainless steel plate
with dimensions of 75 × 150 × 20 mm was used as the impact
plate. The impact plate was fixed to the ground at a 120°
angle to prevent nuts from making multiple impacts. A
microphone (AT9100, Audio-Technica U.S., Inc., Stow,
Ohio), sensitive to frequencies up to 20 kHz, was placed
50 mm from the impact plate. The impact acoustic signal was
sampled at 44.1 kHz with a standard sound card attached to
the computer. ‘Levant’ type hazelnuts, which were collected
from an orchard in Akcakoca, Turkey, in August 2003, were
used in this study. The weights of the hazelnuts were
measured, and those less than 0.9 g were taken as empty or
undeveloped nuts. Hazelnuts with weights over 0.9 g were
accepted as fully developed. This value was found
empirically  by inspecting the weight of several empty,
underdeveloped,  and fully developed hazelnuts. The
hazelnut shells were visually inspected and were further

Figure 2. Block diagram of the proposed signal processing and classification system.
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(a) Undamaged

     

(b) IDK

(c) Scab

     

(d) Pupal

Figure 3. Sample waveforms of wheat kernel impact acoustics for the types studied in this article (N = 10): (a) undamaged kernels, (b) insect-damaged
kernels (IDK) with exit holes, (c) fungi damage (scab), and (d) kernels with hidden damage at the pupal stage where the insect is still in the kernel.

classified into nuts with regular shell and nuts with cracked
shell. For each undamaged and cracked class, 180 signals
were recorded. Representative impact acoustic signals of
wheat and hazelnut kernels recorded with these systems are
presented in figures 3 and 4, respectively.

SIGNAL PROCESSING

Transient features in a signal may carry significant
information for classification. Such features are sometimes
omitted due to their low energy or improper analysis that
ignores temporal information. As shown in figures 3 and 4,
the impact acoustic signals also contain transient waveforms
that may carry information for discrimination. In order to

extract such localized information, time-frequency methods
are widely used (Mallat, 1999; Vetterli, 2001). A
time-frequency analysis explores the time-varying
characteristic  of a signal by windowing it in consecutive time
segments, generally overlapping, and then applying a
spectral analysis to estimate energy distribution of the signal
in the frequency domain. The width of the time window
determines the resolution of the spectral analysis. While
longer windows provide higher spectral resolution, they
provide poor time localization, vice versa. Therefore, it is
desirable to adjust the time windows to adapt to the
time-varying characteristic of the signal. In this study, the
flexible local discriminant bases (F-LDB) algorithm of Ince

(a) Undamaged

     

(b) Cracked

Figure 4. Typical (a) undamaged and (b) cracked shell hazelnut acoustics records.
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et al. (2006) was used to adaptively segment the
time-frequency plane and extract relevant features from the
impact acoustic signal for classification. The adaptive
time-frequency plane feature extraction procedures and pre-
and post-processing steps are discussed below.

Adaptive Time-Frequency Segmentation
The F-LDB algorithm expands the signal into

orthonormal bases using cosine packets, a local
trigonometric  transform, in consecutive time segments, and
finds those segments with a merge/divide strategy, where the
distance between the spectra of different classes is maximum.
This iterative procedure adjusts the width of time windows to
increase the distance between signals. Once the signals are
segmented along the time axis, they are represented by local
cosine transform. In the next step, the merge/divide strategy
is repeated along the frequency axis to group consequent
discriminative  frequency indices. Here, consecutive
frequency indices were merged only if their union had larger
discrimination power than that of the individual indices
treated separately. The procedure described above is
basically a clustering approach by cost function maximiza
tion and produces adaptive frequency segmentation suitable
for discrimination in each time segment. The reader is
referred to Ince et al. (2006) for detailed description of the
algorithm.

Although the acoustic recordings were triggered with
optical sensors, temporal variability exists in the observed
signals due to different travel time of the food kernels from
the feeder to the impact plate. Since the cosine packet
transform is not shift invariant, this temporal variability may
cause variance in the extracted features for classification. For
instance, small shifts of the signal in the time axis cause
abrupt changes in local cosine packet coefficients. In order to
deal with this problem, the ”spin cycle” procedure of Ince et
al. (2006) and Saito et al. (2002) was applied to the training
and test data, as indicated in figure 2, prior to the time and
frequency segmentation step. The spin cycle procedure
generates several copies of a signal by shifting it to the left
and right for a number of given samples. In this study, a
one-sample spin cycle procedure was implemented, and as a
result three copies of each record were created: the original
signal, and one-sample left and right shifted copies of it. This
expands the dataset with several instances of each record to
simulate the temporal variability in the time axis. Each of
these records is processed separately by the time-frequency
analysis method for feature extraction and used in the final
classification.  By using this procedure, the overall algorithm
becomes more robust against the temporal variability in the
recorded signals. The reader is referred to Saito et al. (2002)
and Ince et al. (2006) for further details.

There are various choices for distance measures to be used
in constructing the time segmentation. This study used the
Euclidean distance between the cumulative probability
distributions of each expansion coefficient under class 1 and
class 2, respectively, estimated via a histogram.

Dimension Reduction and Classification
Once the t-f segmentation was completed, the Fisher class

separability criterion was used for sorting the features:

( )
2
2

2
1

2
21F
�+�

�−�= (1)

where μ and σ are the mean and standard deviation,
respectively, of the feature they correspond to. This step is
referred to as class separability criterion based sorting (CS).
This enabled us to filter out features that have small
discrimination power and use those with higher
discrimination information for the final decision.

Although the CS step eliminates most of the irrelevant
features, there is still need to compact the top rank of the
feature set to remove the correlations between features and
reduce the dimensionality. As a last step, principal
component analysis (PCA) was implemented on the top
discriminant feature set returned from the CS step. The
PCA-processed top feature set was input to a linear
discriminant analysis (LDA) function.

Since the one-sample spin cycle procedure was used in the
pre-processing stage, there were three multiple instances of
a particular signal, i.e., shifted to the left and right by one
sample along with the original recording with no shifts. In the
classification stage, these multiple instances of the signal
were classified separately, and a majority voter scheme was
implemented  for the final decision. For example, when an
impact signal was recorded, it was first shifted by one sample
to the left and one sample to the right. Then, for each of these
instances, the features were calculated for the learned t-f
segments and fed to the classifier. Finally, a majority voter
post-processed the classification outputs for all shifts. The
majority voter simply counted the classification outputs
(votes) for each shift for a particular signal and assigned the
signal to the class with the maximum number of votes.

As indicated in the previous sections, the F-LDB
procedure creates t-f segmentation for two-class problems.
Since there are four classes (UD vs. IDK, pupal, and scab) in
the wheat kernel inspection problem, the following strategy
was used:

� All damaged wheat kernel types are classified versus
UD in a single step.

� Each damaged wheat kernel type is classified versus
UD in a pairwise manner.

The impact acoustic signals corresponding to wheat
kernels (UD, IDK, scab, and pupal) were 1024 samples long,
while those corresponding to cracked and healthy hazelnut
shells were 960 samples long. The minimum window size
used for the time axis segmentation with the F-LDB
procedure was selected to be 16 samples for wheat and
32 samples for hazelnuts. After a visual inspection, it was
observed that the impact acoustics patterns for wheat records
have very short living transients compared to hazelnut
records (figs. 3 and 4). Therefore, shorter windows were
selected in the analysis of wheat signals. The smooth
overlapping part of the windows was set to half of the
minimum window size. A one-sample spin cycle procedure
was used before processing the signals. After completing the
time-frequency segmentation with F-LDB, the features were
converted to log scale, normalized, and sorted by the F
criterion. The top 128 features were processed by PCA and
sorted according to the corresponding eigenvalues in
descending order. A 2×2-fold cross-validation was
implemented  to estimate the classification error. First, the
dataset was randomly distributed. Half of the record set was
used in the training stage to find most the discriminant t-f
features, PCA and LDA weights. The remaining set was used
to test the performance of the learned parameters. This
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experiment was repeated twice. In order to compare the
efficiency of the proposed algorithm, the features used by
Pearson et al. (2005) were also extracted and referred to as the
reference approach (RA). These features were extracted from
the short time variances of signal segments, maximum signal
amplitudes,  spectral peak locations, and the parameters of a
Weibull function approximation of the envelope of the
impact signal parameters. The same features were used in the
wheat and hazelnut experiments for comparison purposes.

In order to asses the efficiency of extraction time-
frequency features with adaptive tilings in the classification
of impact acoustic signals, experiments with fixed
time-frequency tilings were conducted. In particular, the
time-frequency features were computed by segmenting the
signals into fixed-width time windows (W) with 32 or
64 sample lengths and then calculating 4 or 8 subband (SB)
features in each time window with equal bandwidth. The
extracted feature set was post-processed with PCA and fed to
LDA for final decision, as in the previous experiments.

RESULTS AND DISCUSSION
WHEAT CLASSIFICATION

Table 1 shows the classification results when undamaged
(UD) wheat kernels were classified against all IDK, scab, and
pupal damaged kernels with a one-against-all strategy. In
particular, single time-frequency plane segmentation and a
single LDA classifier were constructed to discriminate
between undamaged and all damaged wheat kernels. The
algorithm yielded high accuracy for IDK (95.9%) and scab
types (91.2%). However, it resulted in poor classification
accuracy (61%) for pupal damaged kernels. Based on these
results, time-frequency segmentations and classifiers were
designed to discriminate between undamaged kernels vs.
IDK, undamaged kernels vs. scab, and undamaged kernels
vs. pupal. In this scheme, the final classification can be done
in a cascaded classification strategy. In particular, a new
observed acoustic signal can be tested for IDK damage, then
scab damage, and finally for pupal damage.

As indicated previously, paired discrimination is
recognized as a one-against-other classification strategy
(Hastie et al., 2001; Alpaydin, 2004). The results of using
such a technique are presented in table 2. The pairwise
approach provided improvements in classification of pupal
damaged kernels. In particular, using the paired classification
strategy, the classification accuracy rate for pupal damaged
kernel improved from 62% to 81%. Note that the
classification accuracies of undamaged and scab types are
slightly higher in the paired classification strategy. Also note
that time-frequency plane feature extraction and the
classification algorithm outperformed the reference
approach (RA), especially for the scab and pupal damaged
kernels. The paired classifier using adaptively segmented
time-frequency plane features significantly outperformed the
RA in all UD vs. IDK, UD vs. scab, and UD vs. pupal
discriminations (p = 2.3 × 10-7, p = 2.7 × 10-8, p = 8.5× 10-7,
t-test, respectively).

The results discussed above suggest that the pupal class
has features distinct from the IDK and scab classes. To
understand why the F-LDB approach yields better results
than the RA approach with the paired classification

Table 1. Classification accuracies obtained with F-LDB in separating
undamaged kernels (UD) from damaged kernels in a single step.

UD IDK Scab Pupal

F-LDB 90% 95.9% 91.2% 61%

Table 2. Classification accuracies obtained with F-LDB and reference
approach (RA) in separating undamaged kernels (UD) from
damaged kernels. The results belong to paired classifications.

UD vs. IDK UD vs. Scab UD vs. Pupal

F-LDB 96% to 95.7% 93.9% to 96.9% 84% to 81.2%
RA 92% to 82.3% 68.4% to 66.3% 69.8% to 66.5%

technique, the scab and pupal damaged data were studied in
more detail. Consider the time-frequency locations/features
selected by the F-LDB method shown in figure 5 for UD vs.
scab and UD vs. pupal kernel classification. Interestingly, the
moment of impact where maximum signal amplitude was
observed and several time-frequency locations on the tail of
the signal were selected by the algorithm. These post-impact
features appeared to be the most discriminative features and
resulted in a lower error rate. It is possible that the features
on the tail of the signal might be related to the vibration of the
metal plate or turbulence in the air. Note that different
time-frequency segmentations were constructed in the
impact and post-impact regions. The time windows were
quite short in the early impact region, while wider windows
and narrow frequency indices were selected in the
post-impact region. Furthermore, the time-frequency maps
partly explain the degradation in performance in the
one-against-all  classification strategy. As seen in figures 5a
and 5b, the time-frequency locations selected for pupal and
scab damaged kernels are different. A rapid transition from
lower to higher bands in scab features was observed.
Contrary to pupal kernel discrimination, mostly higher bands
were utilized by the algorithm. The capability of the
algorithm to adjust the time-frequency segmentations for a
given damage type can be critical for obtaining good results.
Also note that, for both scab and pupal kernel classification,
post-processing with PCA resulted in lower error rates, as
indicated in figures 5c and 5d. Recall that the CS ordered
features are post-processed with PCA for dimension
reduction and decorrelation of the top rank. This final signal
processing step slightly improved the final classification
accuracy.

These results indicate that using the one-against-other
strategy provides higher recognition accuracies for damaged
wheat kernels. To preserve the high classification accuracy
for all types, a cascaded discrimination strategy, as indicated
in figure 6a, could therefore be used in practice. The cascaded
classification engine integrates three paired classifiers
(UD vs. IDK, UD vs. scab, and UD vs. pupal). Specifically,
when a new impact acoustic signal is observed, the system
first tests for IDK damage. If the system decides that no IDK
damage is present, it tests for scab damage. If no scab damage
is detected, it finally checks for pupal damage. In the current
system, the least accurate classifier is the one that detects
pupal damaged kernels. A receiver operating characteristic
(ROC) curve for the UD vs. pupal damaged classifier is
plotted in figure 6b. The current operating point is shown
with a solid arrow. In order to improve the true positive rate
to 95%, a high false positive rate (dashed arrow) must be
tolerated as well.
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Figure 5. The t-f features selected for (a) UD vs. scab and (b) UD vs. pupal classification. The darker features have more discrimination power. Both
graphs are visualized with the same scale to emphasize the difference in the discrimination power of extracted features. The bottom row shows the
classification error versus the number of features that were sorted by a class separability criteria (CS = F) and PCA. The error curves belong to (c) UD
vs. scab and (d) UD vs. pupal. Note the lower error rates for PCA with a smaller number of features.

HAZELNUT CLASSIFICATION

The proposed system achieved 97.1% classification
accuracy in separating the undamaged hazelnut shells from
cracked shells. In particular, the undamaged and cracked
shell hazelnuts were recognized with 99.2% and 95%
accuracies,  respectively. A classification accuracy of 91.8%
was reported by Kalkan and Yardimci (2006) on this same
dataset by manually selecting the most discriminative

subbands and using their energies for classification. These
results suggest that adaptively segmented time-frequency
plane features significantly outperformed the results of
Kalkan and Yardimci (2006) (p = 0.0061, t-test). The
discriminant time-frequency features selected by the
algorithm are shown in figure 7a. This figure indicates that
the most discriminant features are located in high-frequency
bands following impact. Kalkan and Yardimci (2006) also
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81.2% 84%
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Figure 6. (a) Cascaded classification strategy and (b) ROC curve of UD vs. pupal classifier output. The solid curve was obtained with the spin cycle
procedure, and the dashed curve was obtained without the spin cycle. Note that improving the classification accuracy above 90% involves higher false
positive rates. Note also that the spin cycle preprocessed classifier has higher accuracy.
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Figure 7. (a)The t-f features selected for separation of cracked hazelnuts from undamaged nuts. The darker features have more discrimination power.
Note that the higher frequency band is primarily selected by the algorithm. (b) The classification error curve obtained with and without PCA
post-processing. Note that PCA provides lower error rates with a minimal number of features.

reported higher bands as crucial frequency indices after
manually inspecting several subbands with wavelet
transform. The algorithm proposed in this article learned
these indices automatically from the data.

As in the wheat classification results, the PCA post-
processing step improved the classification accuracies. In
figure 7b, the classification error curves versus the number of
features for PCA and CS are given. Here, the use of PCA
improved the classification accuracy from 96% to 97.1%
with a small number of features. This shows the importance
of post-processing the t-f features sorted by the F criterion,
which does not account for the correlation or interaction
between extracted features.

EXPERIMENT WITH FIXED RESOLUTION FEATURES

Table 3 shows the classification results for wheat and
hazelnuts computed using time-frequency features with
fixed resolution. Note that the classification accuracies
obtained with fixed resolution were quite poor for wheat
kernel classification. For hazelnut classification, the fixed
resolution results were slightly lower than adaptive arbitrary
tilings. In general, an improvement in classification
accuracies was observed when shorter time windows were
utilized in wheat kernel classification. Interestingly, it has
been observed that the undamaged kernels were better
discriminated when longer windows were used in UD vs.
scab kernel discrimination. When shorter windows
(32 samples) were used with eight subbands, the undamaged
kernel recognition accuracy dropped to 82.4% from 87.6%.
In contrast, the scab kernel recognition accuracy was
improved from 75.5% to 79.1%. Similar results were
observed for pupal kernel classification. When the number of

subbands increased from 4 to 8 with 32 sample long time
windows, the undamaged kernel recognition accuracy
dropped from 76.4% to 74.7%. In contrast, the pupal kernel
recognition accuracy slightly increased.

For the hazelnuts, the classification accuracies obtained
with arbitrary and fixed time-frequency tilings were similar.
The arbitrary tilings provided slightly better results (97.1%)
than fixed tilings (96.5%). Note that the adaptive
time-frequency plane tilings for hazelnuts were not as
complex as for wheat kernels (figs. 6 and 7). Therefore,
nearly the same discriminant information can be captured
with fixed tilings. Note also that larger windows provided
better results, and the number of subbands did not have much
effect on the recognition accuracy.

The results obtained indicate that different kernels can be
discriminated with distinct time-frequency segmentations.
Furthermore, when the segmentations are adapted to the
problem, the classification accuracies dramatically increase.

COMPUTATIONAL COMPLEXITY

The t-f segmentation steps are completed off-line. After
learning the most discriminative segments in an off-line
manner, it is only necessary to process the impact acoustics
data at the selected time-frequency locations in real time. The
processing includes calculating the expansion coefficients in
the learned time segments, merging the coefficients in the
frequency domain, projecting the resulting features onto the
principal components, and feeding the results into LDA.

The spin cycle procedure, which is used to eliminate the
lack of translation invariance of local cosine packets, adds
additional complexity to the proposed system, since it entails
estimating the expansion coefficients for several shifts of the

Table 3. Classification accuracies obtained with fixed resolution time-frequency patterns for wheat kernels and hazelnuts
(W = length of time windows in number of samples, and SB = number of subbands computed in each time windows).

Wheat Hazelnut

UD - IDK UD - Scab UD - Pupal UD - Cracked

W = 64, SB = 4 87.2% - 83.0% 73.4% - 67.5% 71.2% - 72.6% 98.7% - 93.1%
W = 64, SB = 8 88.2% - 87.1% 87.6% - 75.5% 74.4% - 73.8% 98.9% - 93.6%
W = 32, SB = 4 90.9% - 86.5% 76.9% - 73.5%. 76.4% - 74.0% 97.8% - 93.1%
W = 32, SB = 8 89.5% - 89.5% 82.4% - 79.1% 74.7% - 74.5% 98.9% - 92.3%
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recorded data. For real-time applications, the average of
expansion coefficients for consecutive shifts might be used
instead. Another solution could be using transformations that
satisfy the translation invariance condition. Although the
system can classify wheat samples with higher accuracies,
the need to recalculate features in the paired hierarchical
classification strategy can be a drawback. This may boost the
computations required by the system, resulting in lower
processing speeds. In order to evaluate the processing speed
of the proposed approach, the speed of the algorithm was
tested on a desktop PC equipped with 1.8 GHz processor and
512 MB of memory. Processing of a single wheat sample took
approximately  0.027 s. This corresponds to a processing
speed of nearly 37 samples per second on the top node of the
classification system. Since at least three steps are required
for UD wheat kernel recognition, they cannot be processed
with a speed of more than 12 kernels per second. The
processing speed for hazelnuts was 77 kernels per second.
Since the classification was implemented in a single step and
minimal error was achieved with small number of features,
the processing speed was quite fast for cracked hazelnut
separation.

CONCLUSION
In this article, an adaptive time-frequency plane feature

extraction and classification technique to discriminate
between damaged and undamaged food kernels by analyzing
related impact acoustics signals was investigated. In
particular, the study focused on the problems of detecting
damaged wheat kernels and hazelnuts with cracked shells.
The procedure requires no prior knowledge of the relevant
time-frequency indices of the impact acoustics signals for
classification. The method automatically learns all crucial
time-frequency indices from the training data by
implementing  individual time and frequency band
adaptation.  Discriminant features were extracted from the
adaptively segmented acoustic signal, sorted according to a
Fisher class separability criterion, post-processed by
principal component analysis, and fed to linear discriminant
classifier for final decision. The approach achieved
classification accuracies in paired separation of undamaged
wheat kernels from insect-damaged kernels with exit holes,
kernels with hidden damage at the pupal stage, and scab
damaged kernels of 96%, 82%, and 94%, respectively. For
the cracked shell vs. undamaged hazelnut separation, the
overall accuracy was 97.1%. The results indicate that
adaptive time-frequency features extracted from impact
acoustic signals provide improved accuracies in damaged
food kernel inspection when compared to baseline methods,
which used features from the time or frequency domain with
fixed resolution. The adaptation capability of the algorithm
to both the time and frequency content of signals makes it a
universal method for food kernel inspection that can resist the
impact acoustic variability between different kernels and
damage types, even though in certain cases it may have a
relatively high computational complexity.
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