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Abstract. Kernel damage caused by insects and fungi is one of the most common reason for poor 
flour quality. Cracked hazelnut shells are prone to infection by cancer producing mold. We propose a 
new adaptive time-frequency classification procedure for detecting cracked hazelnut shells and 
damaged wheat kernels using impact acoustic emissions recorded by dropping wheat kernels or 
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hazelnut shells on a steel plate. The proposed algorithm is based on a flexible local discriminant 
bases (F-LDB) procedure. The F-LDB method combines local cosine packet analysis and a 
frequency axis clustering approach which supports individual time and frequency band adaptation. 
Discriminant features are extracted from the adaptively segmented acoustic signal, sorted according 
to a Fisher class separability criterion, post processed by principal component analysis and fed to 
linear discriminant. We describe experimental results that establish the superior performance of the 
proposed approach when compared with prior techniques reported in the literature or used in the 
field. Our approach achieved classification accuracy in paired separation of undamaged wheat 
kernels from IDK, Pupae and Scab damaged kernels with 96%, 82% and 94%. For hazelnuts the 
accuracy was 97.1%.  

Keywords. Acoustic measurement, time-frequency analysis, adaptive signal processing, pattern 
classification. 
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Introduction 
In this paper we address two important food inspection problems using a novel adaptive time 
frequency segmentation technique: detection of cracked hazelnut and wheat kernel damage. 
Damaged or cracked hazelnut shells are more prone to aflatoxin producing molds (Aspergillus 
Flavus), which can cause cancer. Therefore it is crucial to remove hazelnuts with damaged 
shells from a given shipment prior to processing. 

 Wheat kernel damage caused by insects and fungi are the main sources of flour quality 
degradation. Fusarium graminearum, a fungi found in wheat, creates “scab” damage and may 
lead to toxins known to cause cancer (Christensen et al., 1986). Furthermore internal insect 
infestation degrades the quality and value of wheat and is one of the most difficult defects to 
detect. This type of kernel damage occurs when an adult female insect chews a small hole into 
the kernel, deposits its egg, and then seals the egg with a mixture of mucus. In the “pupae” 
stage, the egg plug is the same color as the wheat surface so it is nearly impossible to detect by 
visual inspection. When the egg hatches, the insect larvae develops and exits the kernel by 
chewing an exit tunnel and forming what is called an “Insect Damaged Kernel” (IDK). This type 
of kernel damage causes grain loss by consumption, nutritional losses, and degradation in the 
end-use quality of flour (Christensen et al., 1986). Separation of the damaged wheat kernels 
from the undamaged ones is crucial for health and quality. Therefore their percentage in the 
production/market is limited by USDA and industry set standards (USDA. Electronic code of 
federal regulations).  

Several methods have been studied to tackle the problem of separating damaged wheat kernels 
from good ones, including X-Ray imaging and carbon dioxide measurements. However these 
methods are slow and expensive. Recently impact acoustic emission has been successfully 
used to separate IDK kernels from healthy ones (Pearson et al., 2005). This idea was borrowed 
from a successful sorting system developed by some of the authors for separating open and 
close pistachio shells. The system is based on dropping the pistachio shells from a certain 
height on a metal plate and processing the resulting impact acoustics for discrimination (Cetin et 
al., 2004). Speech processing algorithms including the combination of time domain modeling, 
spectral features and short time variances were used widely (Pearson et al., 2005) for 
classification. The system exhibited high accuracy when separating IDK from healthy kernels. 
However, the authors reported poor results on other types of kernel damage, such as scab and 
pupae infested kernels. The algorithms used in (Cetin et al., 2004) were also recently extended 
to separate cracked hazelnuts shells from undamaged ones. Specifically, the authors of (Kalkan 
et al. 2006) report classification accuracy around 90% in cracked and healthy hazelnut shell 
separation.  

Here we investigate a new cracked hazelnut and wheat kernel damage detection method based 
on an adaptive time-frequency (t-f) analysis of the impact acoustic signals generated by wheat 
kernels or hazelnut shells when dropped from a fixed height. The proposed approach requires 
no prior knowledge on the relevant time and frequency indexes of impact acoustics signals. It 
implements an arbitrary time and frequency tiling with flexible local discriminant bases 
algorithm. This algorithm is obtained by combining local cosine packet analysis and a frequency 
axis clustering approach that supports individual time and frequency band adaptation. The 
adaptively extracted t-f features are then processed by principal component analysis and 
classified with linear discriminant analysis.  

This paper is organized as follows. In the next section we describe the data acquisition system 
to record impact acoustic emissions. Then we explain the adaptive time-frequency 
segmentation algorithm. In section IV we proceed with the principal component analysis to 
reduce the dimensionality of feature set and finally use a linear discriminant for classification. In 
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section 4 we present experimental results on wheat and hazelnuts data sets to show the 
superior performance of the introduced approach. A schematic diagram describing the overall 
classification system is shown in Figure1.   

 
Figure 1. The block diagram of the proposed signal processing and classification system 

 

DATA ACQUISITION 
A schematic of the experimental apparatus for singulating wheat kernels and hazelnuts, 
dropping them onto the impact plate, then collecting the acoustic emissions from the impact is 
shown in Figure 2. The impact plate is a polished block of stainless steel approximately 7.5 x 
5.0 x 10 cm. The mass of the impact plate is much larger than that of the wheat kernels in order 
to minimize vibrations from the plate interfering with acoustic emissions from kernels. A 
microphone, which is sensitive to frequencies up to 100 KHz, is used in order to sense 
especially ultrasonic acoustic emissions from the wheat kernels. Microphone signals were 
digitized at a sampling frequency of 192 KHz and 44.1 kHz with 16 bit resolution for wheat and 
hazelnuts respectively. The data acquisition was triggered using an optical sensor. Sample 
signals recorded with the data acquisition system are given in Figure 3.   

 

 

 
Figure 2. Schematic of wheat sorter based on acoustic emissions. Modified from (Pearson et al., 2005). 
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Figure 3. Sample Waveforms: (a) Wheat Kernel Impact acoustics for 4 types. (b) Undamaged and 
Cracked hazelnut records. (N=10) 

 

SIGNAL PROCESSING 
We begin by describing the Flexible-Local Discriminant Bases algorithm (F-LDB) of (Ince et al., 
2006). As mentioned earlier, we will use this procedure to adaptively segment the time-
frequency plane and extract relevant features for classification. We detail the post processing of 
time frequency plane features in section IV.   

Construction Adaptive Time Frequency Segmentation 

Transient features in a signal can carry significant information. Mostly such features are omitted 
due to their low energy or improper analysis that ignores temporal information. In order to 
extract such information it is important to focus on local properties of the signal. The F-LDB was  
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    (a)                            (b) 

Fig 4. A schematic illustration of merge/divide based segmentation. It finds the segments where 
classes A and B are well separated. (b) The smooth cosine basis used to represent the signal in 
given segments of (a). 

 

developed to extract such local information by constructing adaptive time-frequency tilings for 
discrimination (Ince et al., 2006). The F-LDB algorithm is an enhanced version of original LDB 
which is limited dyadic/pyramidal tree structure (Saito et al., 2002). The F-LDB algorithm 
expands the signal into orthonormal bases by using local trigonometric transform in consecutive 
time segments and finds those segments where the distance between classes are maximized. 
Since the Cosine Packets are not shift invariant, we first apply the spin cycle procedure of (Ince 
at al., 2006 and Saito et al., 2002) to the training and test data as indicated in Figure 1. The 
reader is referred to (Saito et al., 2002) for further detail 

Let us explain how the adaptive time segmentation procedure works on sample signals given in 
Figure 4 in a two class problem. The signals A and B are analyzed in adjacent windows with a 
children and mother structure as indicated from bottom to top. The windows are smooth and 
overlap neighboring windows (See Figure 4. (b)). In each window, the signals are expanded 
using Local Cosine Packets. Then the distance between the cumulative distributions functions 
corresponding to the resulting expansion coefficients are compared in the mother and children 
subspaces. Whenever the total distance between the classes in the children subspaces is larger 
than that in the mother subspace, the signal is divided at that point. Otherwise, the children 
segments are merged. In the next iteration, the merged segment is used as the left child.  Note 
that the right child is the smallest size time segment used by the procedure and will have length 
less than that of the left segment. Unlike the dyadic case, the children windows are not 
necessarily half the length of the mother window as illustrated in Figure  4. This algorithm is 
iterated along the time axis by implementing the above procedure on adjacent segments. The 
resulting merge operations can cause the mother window and left child to grow to be multiples 
of the basic smallest segment or time partitioning can occur after each comparison.  

The cumulative probability distributions of the expansion coefficients corresponding to the two 
classes are estimated via high resolution histogram derived from the training data set. 
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 Dimension Reduction and Classification 

The F-LDB algorithm produces a feature space of high dimensionality equal to the dimension of 
the original signal. In order reduce the dimensionality and deal with the uncertainty in frequency 
axis we adaptively group the expansion coefficients in each adapted time segment. We reshape 
the Merge/Divide strategy for frequency axis. Here consecutive frequency indices were merged 
only if their union has larger discrimination power than that of the individual indices treated 
separately. The procedure described above is basically a clustering approach by cost function 
maximization and produces adaptive frequency segmentation suitable for discrimination in each 
time segment. 

 Once the t-f segmentation is completed we use the Fisher class separability criterion  
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for sorting the features, where   and   are the mean and standard deviation of the feature they 
correspond to. 

As a last step, principal component analysis (PCA) was implemented on the top discriminant 
feature set. We projected the top subset of the sorted feature set onto its eigenvectors. 

                                            k
T
ku W x=                                                                                    (3) 

where   is the projected vector,   is the kth eigenvector of the covariance matrix of the feature 
set and  is the feature vector. The PCA processed top feature set was input to a linear 
discriminant analysis (LDA). The weight vector used in LDA is calculated as 

                                    1
1 2 1 2( ) ( )v m m−= ∑ +∑ −                                                                        (4) 

where  ,  are the covariance matrix and mean of class features respectively. The distance of a 
feature vector to the discriminating hyperplane is calculated as 

                                            Td v x=                                                                                          (5) 

where   is the feature vector and  is the distance.  

 

RESULTS 
In this section we present experimental results on the classification of wheat kernels and 
hazelnuts. The impact acoustic signals corresponding to wheat kernels (Healthy, IDK, Scab and 
Pupae) were 1024 samples long while those corresponding to cracked and healthy hazelnut 
shells were 960 samples long. The minimum window size used for the time segmentation with 
the flexible LDB procedure size was selected to be 16 samples for wheat and 32 samples for 
hazelnuts. The smooth overlapping part of the windows was set to half of the minimum window 
size. A one spin cycle procedure is used before processing the signals. After completing the t-f 
segmentation, the features were converted to log scale, normalized and sorted by the F 
criterion. The top 128 features were processed by PCA and sorted according the eigenvalues in 
descending order. A 2 times 2 fold cross validation was implemented to estimate classification 
error. In order to compare the efficiency of the introduced algorithm we used the same features 
of (Cetin et al., 2004) and refer as base approach (BA). The reader is referred to (Cetin et al., 
2004) for further detail. 
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Table 1 shows results from both approaches obtained on wheat kernels. IDK, SCAB, PUPAE 
and undamaged (UD) indicate the individual classification error for each type. 

 

TABLE 1. The classification accuracies obtained with Flexible-LDB (F-LDB) and base 
approaches (BA) in separating undamaged kernels (UD) from damages ones. The results 

belong to paired classifications. 

 UD - IDK UD - SCAB UD - PUPAE 

F-LDB 96% - 95.7% 93.9% - 96.9% 84% - 81.2% 

BA 92% - 82.3% 68.4% - 66.3 % 69.8% - 66.5% 

 

The proposed approach outperformed the conventional methods, especially for the scab and 
pupae damaged kernels. We visualize the t-f locations selected by F-LDB method in Figure  5. 
Interestingly, the impact area and several locations after impact onset were selected by the 
algorithm. These features appear to be the critical ones and resulted in a lower error rate and 
we believe they might be related to the vibration of metal plate. We also tested the classification 
performance by constructing single time-frequency segmentation for discriminating the healthy 
kernels from all undamaged types. When such a strategy is used the pupae classification 
accuracy rate drops to 62%. The t-f maps partly explain the degradation in performance. As 
seen from Figure 5. (a) and (c) the t-f location selected for pupae and scab are different.  

In order to preserve the high classification accuracy for all types we propose a step wise 
discrimination strategy. In case a new signal is recorded it will be iteratively classified by all 
setups. However a high true positive rate is necessary for such a system. In the current system 
the most critical classifier is the one for Pupae kernels. We plot the Receiver Operator 
Characteristic Curve in Figure 6 for this classifier output. The current work point is shown with 
solid arrow. In order to improve the true positive rate to 95% one will pay with high false positive 
rate (dashed arrow).       
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(e)                (f) 

Figure 5. The left column shows t-f features selected for Scab (a), Pupae (c) and hazelnut 
(e) classification. The darker features have the more discrimination power. The right column 
shows the classification error versus the number of features which were sorted by a class 
separability criteria (CS=F) and PCA. The error curves belong to Scab (b), Pupae (d) and 

hazelnuts (f) respectively. Notice the lower error rates of PCA with minimal features. 

 

The proposed system has achieved 97.1% classification accuracy while separating the healthy 
hazelnut shells from cracked ones. We visualize the discriminant t-f features selected by 
algorithm in Figure 5.e. The t-f map shows that the most discriminant features are located at 
high frequency bands following the impact. In Figure 5.f. we see the classification error curve 
versus the number of features. Here the PCA has improved the classification accuracy from 
96% to 97% with small number of features. This shows the importance of post processing the t-f 
features sorted by F criterion.  

As a result, the capacity of adaptively locating the discriminant components and adjusting the t-f 
segmentations for discrimination makes the proposed algorithm a good candidate for future 
damaged food kernel separation systems. 
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Fig.6. The ROC curve of UD-Pupae classifier output. 
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