1,435 research outputs found

    Cochlear Implantation after Bacterial Meningitis in Infants Younger Than 9 Months

    Get PDF
    Objective. To describe the audiological, anesthesiological, and surgical key points of cochlear implantation after bacterial meningitis in very young infants. Material and Methods. Between 2005 and 2010, 4 patients received 7 cochlear implants before the age of 9 months (range 4–8 months) because of profound hearing loss after pneumococcal meningitis. Results. Full electrode insertions were achieved in all operated ears. The audiological and linguistic outcome varied considerably, with categories of auditory performance (CAP) scores between 3 and 6, and speech intelligibility rating (SIR) scores between 0 and 5. The audiological, anesthesiological, and surgical issues that apply in this patient group are discussed. Conclusion. Cochlear implantation in very young postmeningitic infants is challenging due to their young age, sequelae of meningitis, and the risk of cochlear obliteration. A swift diagnostic workup is essential, specific audiological, anesthesiological, and surgical considerations apply, and the outcome is variable even in successful implantations

    OH-selected AGB and post-AGB objects I.Infrared and maser properties

    Full text link
    Using 766 compact objects from a survey of the galactic Plane in the 1612-MHz OH line, new light is cast on the infrared properties of evolved stars on the TP-AGB and beyond. The usual mid-infrared selection criteria, based on IRAS colours, largely fail to distinguish early post-AGB stages. A two-colour diagram from narrower-band MSX flux densities, with bimodal distributions, provides a better tool to do the latter. Four mutually consistent selection criteria for OH-masing red PPNe are given, as well as two for early post-AGB masers and one for all post--AGB masers, including the earliest ones. All these criteria miss a group of blue, high-outflow post-AGB sources with 60-mum excess; these will be discussed in detail in Paper II. The majority of post-AGB sources show regular double-peaked spectra in the OH 1612-MHz line, with fairly low outflow velocities, although the fractions of single peaks and irregular spectra may vary with age and mass. The OH flux density shows a fairly regular relation with the stellar flux and the envelope optical depth, with the maser efficiency increasing with IRAS colour R21. The OH flux density is linearly correlated with the 60-mum flux density.Comment: 16 pages, LaTex, 22 figures, AJ (accepted

    Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    Get PDF
    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450um, 870um, 1.4mm, and 2.8mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2Msun). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated to the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.Comment: ApJL accepte

    The Kr85 s-process Branching and the Mass of Carbon Stars

    Full text link
    We present new spectroscopic observations for a sample of C(N)-type red giants. These objects belong to the class of Asymptotic Giant Branch stars, experiencing thermal instabilities in the He-burning shell (thermal pulses). Mixing episodes called third dredge-up enrich the photosphere with newly synthesized C12 in the He-rich zone, and this is the source of the high observed ratio between carbon and oxygen (C/O > 1 by number). Our spectroscopic abundance estimates confirm that, in agreement with the general understanding of the late evolutionary stages of low and intermediate mass stars, carbon enrichment is accompanied by the appearance of s-process elements in the photosphere. We discuss the details of the observations and of the derived abundances, focusing in particular on rubidium, a neutron-density sensitive element, and on the s-elements Sr, Y and Zr belonging to the first s-peak. The critical reaction branching at Kr85, which determines the relative enrichment of the studied species, is discussed. Subsequently, we compare our data with recent models for s-processing in Thermally Pulsing Asymptotic Giant Branch stars, at metallicities relevant for our sample. A remarkable agreement between model predictions and observations is found. Thanks to the different neutron density prevailing in low and intermediate mass stars, comparison with the models allows us to conclude that most C(N) stars are of low mass (M < 3Mo). We also analyze the C12/C13 ratios measured, showing that most of them cannot be explained by canonical stellar models. We discuss how this fact would require the operation of an ad hoc additional mixing, currently called Cool Bottom Process, operating only in low mass stars during the first ascent of the red giant branch and, perhaps, also during the asymptotic giant branch.Comment: 54 pages + 6 figures + 6 tables. ApJ accepte

    Energy expenditure and dietary intake in professional football players in the Dutch Premier League:Implications for nutritional counselling

    Get PDF
    Selecting effective dietary strategies for professional football players requires comprehensive information on their energy expenditure (EE) and dietary intake. This observational study aimed to assess EE and dietary intake over a 14-day period in a representative group (n = 41) of professional football players playing in the Dutch Premier League (Eredivisie). Daily EE, as assessed by doubly labelled water, was 13.8 ± 1.5 MJ/day, representing a physical activity level (PAL) of 1.75 ± 0.13. Weighted mean energy intake (EI), as assessed by three face-to-face 24-h recalls, was 11.1 ± 2.9 MJ/day, indicating 18 ± 15% underreporting of EI. Daily EI was higher on match days (13.1 ± 4.1 MJ) compared with training (11.1 ± 3.4 MJ; P < 0.01) and rest days (10.5 ± 3.1 MJ; P < 0.001). Daily carbohydrate intake was significantly higher during match days (5.1 ± 1.7 g/kg body mass (BM)) compared with training (3.9 ± 1.5 g/kg BM; P < 0.001) and rest days (3.7 ± 1.4 g/kg BM; P < 0.001). Weighted mean protein intake was 1.7 ± 0.5 g/kg BM. Daytime distribution of protein intake was skewed, with lowest intakes at breakfast and highest at dinner. In conclusion, daily EE and PAL of professional football players are modest. Daily carbohydrate intake should be increased to maximize performance and recovery. Daily protein intake seems more than adequate, but could be distributed more evenly throughout the day

    Spectral and morphological analysis of the remnant of Supernova 1987A with ALMA & ATCA

    Get PDF
    We present a comprehensive spectral and morphological analysis of the remnant of Supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (λ\lambda 3.2 mm to 450 μ\mum), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (Sνν0.73S_{\nu}\propto\nu^{-0.73}) and the thermal component originating from dust grains at T22T\sim22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localised west of the SN site, as the spectral analysis yields 0.4α0.1-0.4\lesssim\alpha\lesssim-0.1 across the western regions, with α0\alpha\sim0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.Comment: ApJ accepted. 21 pages, emulateapj. References update

    The Detection of Hot Cores and Complex Organic Molecules in the Large Magellanic Cloud

    Get PDF
    We report the first extragalactic detection of the complex organic molecules (COMs) dimethyl ether (CH3OCH3) and methyl formate (CH3OCHO) with the Atacama Large Millimeter/submillimeter Array (ALMA). These COMs, together with their parent species methanol (CH3OH), were detected toward two 1.3 mm continuum sources in the N 113 star-forming region in the low-metallicity Large Magellanic Cloud (LMC). Rotational temperatures (Trot130{T}_{\mathrm{rot}}\sim 130 K) and total column densities (Nrot1016{N}_{\mathrm{rot}}\sim {10}^{16} cm−2) have been calculated for each source based on multiple transitions of CH3OH. We present the ALMA molecular emission maps for COMs and measured abundances for all detected species. The physical and chemical properties of two sources with COMs detection, and the association with H2O and OH maser emission, indicate that they are hot cores. The fractional abundances of COMs scaled by a factor of 2.5 to account for the lower metallicity in the LMC are comparable to those found at the lower end of the range in Galactic hot cores. Our results have important implications for studies of organic chemistry at higher redshift

    Faraday rotation of the supernova remnant G296.5+10.0: Evidence for a Magnetized Progenitor Wind

    Full text link
    We present spectropolarimetric radio images of the supernova remnant (SNR) G296.5+10.0 at frequencies near 1.4 GHz, observed with the Australia Telescope Compact Array. By applying rotation measure (RM) synthesis to the data, a pixel-by-pixel map of Faraday rotation has been produced for the entire remnant. We find G296.5+10.0 to have a highly ordered RM structure, with mainly positive RMs (mean RM of +28 rad/m**2) on the eastern side and negative RMs (mean RM of -14 rad/m**2) on the western side, indicating a magnetic field which is directed away from us on one side and toward us on the other. We consider several possible mechanisms for creating the observed RM pattern. Neither Faraday rotation in foreground interstellar gas nor in a homogeneous ambient medium swept up by the SNR shell can easily explain the magnitude and sign of the observed RM pattern. Instead, we propose that the observed RMs are the imprint of an azimuthal magnetic field in the stellar wind of the progenitor star. Specifically, we calculate that a swept-up magnetized wind from a red supergiant can produce RMs of the observed magnitude, while the azimuthal pattern of the magnetic field at large distances from the star naturally produces the anti-symmetric RM pattern observed. Expansion into such a wind can possibly also account for the striking bilateral symmetry of the SNR's radio and X-ray morphologies.Comment: Accepted for publication in The Astrophysical Journa

    GASKAP -- The Galactic ASKAP Survey

    Get PDF
    A survey of the Milky Way disk and the Magellanic System at the wavelengths of the 21-cm atomic hydrogen (HI) line and three 18-cm lines of the OH molecule will be carried out with the Australian Square Kilometre Array Pathfinder telescope. The survey will study the distribution of HI emission and absorption with unprecedented angular and velocity resolution, as well as molecular line thermal emission, absorption, and maser lines. The area to be covered includes the Galactic plane (|b|< 10deg) at all declinations south of delta = +40deg, spanning longitudes 167deg through 360deg to 79deg at b=0deg, plus the entire area of the Magellanic Stream and Clouds, a total of 13,020 square degrees. The brightness temperature sensitivity will be very good, typically sigma_T ~ 1 K at resolution 30arcsec and 1 km/s. The survey has a wide spectrum of scientific goals, from studies of galaxy evolution to star formation, with particular contributions to understanding stellar wind kinematics, the thermal phases of the interstellar medium, the interaction between gas in the disk and halo, and the dynamical and thermal states of gas at various positions along the Magellanic Stream.Comment: 45 pages, 8 figures, Pub. Astron. Soc. Australia (in press
    corecore