2,611 research outputs found

    Combination of measurements and the BLUE method

    Full text link
    The most accurate method to combine measurement from different experiments is to build a combined likelihood function and use it to perform the desired inference. This is not always possible for various reasons, hence approximate methods are often convenient. Among those, the best linear unbiased estimator (BLUE) is the most popular, allowing to take into account individual uncertainties and their correlations. The method is unbiased by construction if the true uncertainties and their correlations are known, but it may exhibit a bias if uncertainty estimates are used in place of the true ones, in particular if those estimated uncertainties depend on measured values. In those cases, an iterative application of the BLUE method may reduce the bias of the combined measurement.Comment: 10 pages, 4 figures, proceedings of the XIIth Quark Confinement and Hadron Spectrum conference, 28/8-2/9 2016, Tessaloniki, Greec

    GaAs‐based multiple quantum well tunneling injection lasers

    Full text link
    We report the modulation characteristics of multiple quantum well tunneling injection lasers designed for 0.98 ÎŒm emission wavelength. Electrons are injected into the active region through a single barrier via tunneling. The active region has four quantum wells with different well widths. Improved high frequency performance, compared to similar separate confinement heterostructure lasers, has been demonstrated. The modulation response at 21 GHz is above 0 dB and the extrapolated −3 dB modulation bandwidth is ∌30 GHz under pulsed bias. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70389/2/APPLAB-69-16-2309-1.pd

    Etude sur Le Miroir, ou Les Evangiles des domees de Robert de Gretham

    Get PDF

    Interaction Between Hot Carrier Aging and PBTI Degradation in nMOSFETs: Characterization, Modelling and Lifetime Prediction

    Get PDF
    Modelling of the interaction between Hot Carrier Aging (HCA) and Positive Bias Temperature Instability (PBTI) has been considered as one of the main challenges in nanoscale CMOS circuit design. Previous works were mainly based on separate HCA and PBTI instead of Interacted HCA-PBTI Degradation (IHPD). The key advance of this work is to develop a methodology that enables accurate modelling of IHPD through understanding the charging/discharging and generation kinetics of different types of defects during the interaction between HCA and PBTI. It is found that degradation during alternating HCA and PBTI stress cannot be modelled by independent HCI/PBTI. Different stress sequence, i.e. HCA-PBTI-HCA and PBTI-HCA-PBTI, lead to completely different degradation kinetics. Based on the Cyclic Anti-neutralization Model (CAM), for the first time, IHPD has been accurately modelled for both short and long channel devices. Complex degradation mechanisms and kinetics can be well explained by our model. Our results show that device lifetime can be underestimated by one decade without considering interaction

    Reconfigurable Autonomy

    Get PDF
    This position paper describes ongoing work at the Universities of Liverpool, Sheffield and Surrey in the UK on developing hybrid agent architectures for controlling autonomous systems, and specifically for ensuring that agent-controlled dynamic reconfiguration is viable. The work outlined here forms part of the Reconfigurable Autonomy research project

    On the counterfactual nature of gambling near-misses: An experimental study

    Get PDF
    Research on gambling near-misses has shown that objectively-equivalent outcomes can yield divergent emotional and motivational responses. The subjective processing of gambling outcomes is affected substantially by close but non-obtained outcomes (i.e. counterfactuals). In the current paper, we investigate how different types of near-misses influence self-perceived luck and subsequent betting behavior in a wheel-of-fortune task. We investigate the counterfactual mechanism of these effects by testing the relationship with a second task measuring regret/relief processing. Across two experiments (Experiment 1, n\textit{n} = 51; Experiment 2, n\textit{n} = 104), we demonstrate that near-wins (neutral outcomes that a reclose to a jackpot) decreased self-perceived luck, whereas near-losses (neutral outcomes that are close to a major penalty) increased luck ratings. The effects of near-misses varied by near-miss position (i.e. whether the spinner stopped just short of, or passed through, the counterfactual outcome), consistent with established distinctions between upward versus downward, and additive versus subtractive, counterfactual thinking. In Experiment 1, individuals who showed stronger counterfactual processing on the regret/relief task were more responsive to near-wins and near-losses on the wheel-of-fortune task. The effect of near-miss position was attenuated when the anticipatory phase (i.e. the spin and deceleration) was removed in Experiment 2. Further differences were observed within the objective gains and losses, between “clear” and “narrow” outcomes. Taken together, these results help substantiate the counterfactual mechanism of near-misses.This work was completed within the University of Cambridge Behavioural and Clinical Neuroscience Institute (director: TW Robbins), supported by a consortium award from the Medical Research Council (MRC Ref G1000183) and Wellcome Trust (WT Ref 093875/Z/10/Z). YW was supported by Shenzhen University Research Fund (701/00036973), National Natural Science Foundation of China (31600923, 31271088) and the Treherne Studentship in Biological Sciences from Downing College, Cambridge. The Centre for Gambling Research at UBC (LC) is supported by funding from the British Columbia Lottery Corporation and the Province of British Columbia

    Fast computation by block permanents of cumulative distribution functions of order statistics from several populations

    Full text link
    The joint cumulative distribution function for order statistics arising from several different populations is given in terms of the distribution function of the populations. The computational cost of the formula in the case of two populations is still exponential in the worst case, but it is a dramatic improvement compared to the general formula by Bapat and Beg. In the case when only the joint distribution function of a subset of the order statistics of fixed size is needed, the complexity is polynomial, for the case of two populations.Comment: 21 pages, 3 figure

    Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver.

    Get PDF
    Organ motion as a result of respiratory and cardiac motion poses significant challenges for the accurate delivery of radiotherapy to both the thorax and the upper abdomen. Modern imaging techniques during radiotherapy simulation and delivery now permit better quantification of organ motion, which in turn reduces tumour and organ at risk position uncertainty. These imaging advances, coupled with respiratory correlated radiotherapy delivery techniques, have led to the development of a range of approaches to manage respiratory motion. This review summarises the key strategies of image-guided respiratory motion management with a focus on lung and liver radiotherapy

    Autonomous nuclear waste management

    Get PDF
    Redundant and non-operational buildings at nuclear sites are decommissioned over a period of time. The process involves demolition of physical infrastructure resulting in large quantities of residual waste material. The resulting waste materials are packed into import containers to be delivered for post-processing, containing either sealed canisters or assortments of miscellaneous objects. At present post-processing does not happen within the United Kingdom. Sellafield Ltd. and National Nuclear Laboratory are developing a process for future operation so that upon an initial inspection, imported waste materials undergo two stages of post-processing before being packed into export containers, namely sort and segregate or sort and disrupt. The post-processing facility will remotely treat and export a wide range of wastes before downstream encapsulation. Certain wastes require additional treatment, such as disruption, before export to ensure suitability for long-term disposal. This article focuses on the design, development, and demonstration of a reconfigurable rational agent-based robotic system that aims to highly automate these processes removing the need for close human supervision. The proposed system is being demonstrated through a downsized, lab-based setup incorporating a small-scale robotic arm, a time-of-flight camera, and high-level rational agent-based decision making and control framework

    Hubble Space Telescope NICMOS Polarization Measurements of OMC-1

    Full text link
    We present 2micron polarization measurements of positions in the BN region of the Orion Molecular Cloud (OMC-1) made with NICMOS Camera 2 (0.2'' resolution) on HST. Our results are as follows: BN is sim 29% polarized by dichroic absorption and appears to be the illuminating source for most of the nebulosity to its north and up to sim 5'' to its south. Although the stars are probably all polarized by dichroic absorption, there are a number of compact, but non-point-source, objects that could be polarized by a combination of both dichroic absorption and local scattering of star light. We identify several candidate YSOs, including an approximately edge-on bipolar YSO 8.7'' east of BN, and a deeply-embedded variable star. Additional strongly polarized sources are IRc2-B, IRc2-D, and IRc7, all of which are obviously self-luminous at mid-infrared wavelengths and may be YSOs. None of these is a reflection nebula illuminated by a star located near radio source I, as was previously suggested. Other IRc sources are clearly reflection nebulae: IRc3 appears to be illuminated by IRc2-B or a combination of the IRc2 sources, and IRc4 and IRc5 appear to be illuminated by an unseen star in the vicinity of radio source I, or by Star n or IRc2-A. Trends in the magnetic field direction are inferred from the polarization of the 26 stars that are bright enough to be seen as NICMOS point sources. The most polarized star has a polarization position angle different from its neighbors by sim 40^o, but in agreement with the grain alignment inferred from millimeter polarization measurements of the cold dust cloud in the southern part of OMC-1.Comment: 41 pages, 8 figures, 4 tables, to appear in The Astrophysical Journa
    • 

    corecore