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Abstract This position paper describes ongoing work at

the Universities of Liverpool, Sheffield and Surrey in the

UK on developing hybrid agent architectures for control-

ling autonomous systems, and specifically for ensuring that

agent-controlled dynamic reconfiguration is viable. The

work outlined here forms part of the Reconfigurable

Autonomy research project.
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1 Autonomous Systems

Autonomy is the ability of an entity to make its own

decisions and to act on its own, both without external

intervention. Autonomous Systems is a term covering a

broad class of systems that decide for themselves what to

do and when to do it, in particular without direct human

intervention.

The popularity of this class of systems is increasing

rapidly. But why? And why now? Let us consider some of

the justifications for turning to autonomy. Autonomous

systems are particularly being developed in the following

scenarios:

– When systems must work in dangerous environments

where humans cannot be nearby, and so humans cannot

assess the possibilities easily and quickly;

– Similarly, systems that must work in remote environ-

ments where direct human control is infeasible;

– Situations where systems need to react much more

quickly than humans can possibly achieve;

– Scenarios where, while human control may be possible,

there are just too many autonomous entities active for

any one human to keep track of; or (increasingly);

– Where it is cheaper to use autonomous systems rather

than involving a human pilot/driver/controller!

Given these motivations, aspects of autonomy are now

appearing across a wide variety of practical systems, from

autonomous vehicles, such as driver-less cars and unman-

ned air vehicles, through to robotics, both in the home and

in wider society (Fig. 1). Less obviously, autonomy is an

implicit part of feedback-control in engineering and sensor-

based systems, such as those seen in pervasive, autonomic,

and ubiquitous computing [15].
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Many deployed autonomous systems comprise complex

and intricate controllers, typically involving open and

closed loop control systems, neural networks, or genetic

algorithms.

While such controllers can be efficient for known

dynamics of the environment and may be able to cope with

the continuous nature of real-world interactions, such

architectures are often quite hard to make work properly

when there are frequent dynamical changes due to a

varying environment. In such cases some situational

awareness-based switching of controllers is needed. If

stability can be guaranteed then an alternative is to use

learning controllers.

On the other hand the operation of ‘‘successful’’ robust

controllers for vehicles with possibly changing dynamics

due to electro-mechanical and environmental variations

can often be unclear (i.e. they are opaque). Since they are

hard to understand, reliability is difficult to assess and both

update and improvement can be tortuous. Even when such

systems are modelled, for example, in terms of large sets of

differential equations, these representations can also be

opaque, difficult to analyze, and problematic to refine.

2 Assessing Autonomy

There are problems inherent in analyzing an autonomous

system that operates feedback controllers and makes

decisions to form a ‘‘hybrid system’’, i.e. a system with

both continuous and discrete states. Even if traditional

hybrid system analysis approaches were feasible then

there is yet another problem. The key new aspect that

complex autonomy brings is that an autonomous system

must make decisions rather than a human controller

making them. Thus, it is vital to be able to assess not only

what a system does, but what decisions were taken, and

why they were taken [2]. Extracting these decisions from

complex control systems can be extremely difficult. It

turns out that what we also need, and something that

highlights the difference between an adaptive/automatic

system and an autonomous one, is: (1) explicit reasons for

making decisions one way or the other; (2) setting the

system’s own feedback/feed-forward control targets

based on some form of reasoning, modelling and predic-

tion. After all, a system can make decisions but we cannot

assess whether it is reliable unless we know how it comes

to these decisions. Only by understanding the underlying

process can we truly trust the decisions that the system

has taken [8].

2.1 Hybrid Agent Architectures

Developers of autonomous systems across many domains

(air, space, underwater, robotics, software, etc) are coming

to the realisation that we need a system architecture that

captures, clearly and precisely, what it does (i.e. what

series of actions it undertakes), what choices it made that

led to these actions, and why it made one choice rather than

another. This might seem quite ambitious but, fortunately,

many decades of research on rational agents provide

Fig. 1 Autonomy appears in

many distinct practical systems
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theories, models, and implementations of exactly such

entities [24].

What is an Agent? The ‘agent’ concept has been  
found to be a very useful abstraction for autonomous 
behaviour within complex, dynamic systems. Agents 
make decisions independently from their environment 
and, typically: work in environments that are both dy- 
namic and unpredictable; can potentially learn/evolve 
new behaviour; act under varying real-time constraints; 
and are part of an open system (i.e. no fixed topology) 
and therefore have no central control. In general, they  
must be capable of flexible autonomous action [24]. 

What is a Rational Agent? But the ‘agent’ concept 
is still not enough! Systems controlled by neural net- 
works, genetic algorithms, control systems, etc, can act 
autonomously yet, as we suggested above, the reasons  
for their actions are often opaque. Consequently, such  
systems are often hard to develop, control and analyze 
and so the concept of a ‘‘rational agent’’ has become 
popular. This is an agent which must have explicit rea- 
sons for making the choices it does, and should be able  
to explain these if necessary. Such agents are often pro- 
grammed and analyzed by describing their goals and 
knowledge, and how these change over time. Typically, 
rational agents can adapt their autonomous behaviour  
to cater for the dynamic aspects of their environment, 
requirements and knowledge. 

Example: Spacecraft Landing Imagine a rational agent

controlling a spacecraft that is attempting to land on a

planet. The agent has: control of dynamic activity, e.g.

velocity vector, attitude, etc; information, e.g. ‘knowl-

edge’/‘belief’ about the planet terrain, target landing sites,

etc; and motivations, e.g. ‘goals’ such as to land soon, to

remain aloft until safe to land, etc. The rational agent must

dynamically

– Assess, and possibly revise, the information held,

– Generate new motivations or revise current ones, and

– Decide what to do, i.e. deliberate over its motivations

and information.

2.2 Hybrid Agent Architectures

Thus, many contemporary autonomous systems (less so in

the field of Robotics, where such architectures are rela-

tively rare) employ a hybrid agent architecture, with con-

trol, neural, and genetic sub-systems being over-seen by a

rational agent. These agents are high-level decision-mak-

ers and, crucially, their rational nature means that they

should have (and be able to explain) reasons for making the

choices they do:

Such hybrid agent architectures are increasingly com-

mon across many applications, from software autonomy to

autonomous vehicles.

3 Towards Genericity

There have been several attempts to produce agent-based

architectures for specific autonomous systems. We have

developed agent-based satellite formation flying [1, 16,

17], agent-based UAVs [23], agent-based underwater

autonomy (with Imperial College) [10], agent-based re-

configurable mission planning [12], essentially using sim-

ilar styles of hybrid agent architectures. Our aim in the

current Reconfigurable Autonomy project is to answer the

question:

can a common ‘‘autonomy architecture’’ be provided

and be configured for different autonomous systems?

If so, then such an approach would be

– Easier to develop (through re-use of code/architecture),

– More reliable (since the particular core would be

deeply analyzed and refined over several configura-

tions), and

– Easier to deploy on new platforms.

So, we are generalizing and extending our hybrid agent

architectures from [1, 16, 17, 23] to provide the basis for

this. The two key aspects of this architecture will be that

(a) It is both rational and hybrid, allowing for reliable

decision making in realistic environments, and

(b) It is extensible with the potential interfaces to the

environment being precisely described within a

‘‘plug and play’’ interface library of sensors/

controllers/actuators.

Consequently, our current work involves

1. Defining a core, open-source architecture, based on

that introduced within [1, 16, 17, 23], but also

incorporating key elements of reconfigurable mission

planning from [12–14];
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2. Investigating how a library of ‘‘environmental interfaces’’

can be incorporated into this architecture, with typical

elements within the library corresponding to special

control systems, networks interfaces, or infrastructure; and

3. In collaboration with a number of industrial partners,

showing how this generic architecture can be instan-

tiated, demonstrating a selection of real autonomous

systems, and evaluating the practical efficacy of the

instantiated architecture.

4 Towards Reconfigurability

An important aspect of our generic, hybrid, agent-based

architecture is the separated, modular nature and the

potential for reconfigurability. Basic reconfigurability

concerns configuring the generic architecture for specific

hardware, specific applications, and specific control sys-

tems. While such configuration might occur at start-up, can

we change this configuration, or reconfigure it, during

execution? The modular nature of our architecture can

allow for a range of reconfigurability and, below, we

identify some of the possibilities.

4.1 Reconfiguration due to Hardware

If the autonomous system loses some hardware (e.g. a

thruster) then can the agent dynamically reconfigure the

control systems to still achieve its mission with one less

thruster? And can the same be done for any hardware, e.g.

wheel, arm, sensor, etc?

But what if a new element of hardware is added rather

than removed? Clearly control that takes this (for example,

an extra thruster) into account must be organised by the

agent.

Similarly, the agent itself might need to modify (or

reconfigure) its high-level goal/plan selection to take into

account the restricted/new possibilities. For example, with

an additional sensor, the agent might be able to select or

plan more complex missions.

4.2 Reconfiguration due to Control

Change in the controller need not be due to change to the

hardware. Updates may be caused by many factors, for

example to correct errors detected during runtime, newly

found controllers that offer superior performance metrics

or onboard errors necessitating reconfiguration.

Each of these cases necessitates a transition between

controllers that must be managed by the agent. This tech-

nique is commonly known as Plug & Play Control [18];

therefore the controllers can be described as polymorphic,

as they change during operation. These polymorphic con-

trollers adjust their rules, parameters and sensor sources to

suit present conditions including failures. It is the man-

agement of this polymorphism by the agent through a

formal process of understanding of physical systems, rep-

resenting topological constructs and appropriate analysis

and synthesis to understand dynamics that will drive the

change [11]. Naturally these changes must also be reflected

where they impact upon high-level goals/plans.

The Robot Operating System (ROS), provides a natural

architecture that offers the potential for re-configuration, by

using a flexible, graph based, structure where nodes can be

activated and incorporated or removed quickly. By repre-

senting a control system within this structure then com-

ponents can easily be substituted to allow a reconfigurable

ROS-based control system [5].

4.3 Reconfiguration due to Agent

Another view of reconfigurability is where the hardware

and control aspects of the system remain the same, yet

the agent itself reconfigures high-level elements, such as

its goals, its plans, its knowledge, and potentially its

strategies. In addition, the modular nature of the archi-

tecture above allows for different (often improved)

planning, learning, coordination, etc, modules to be

incorporated.

Thus, our aim is to provide a generic architecture that

also fits in with the above reconfigurability. Then, can we

devise modular components, such as alternative planning

and learning components, that will fit into this architecture

(Note that we are not essentially devising new planning/

learning systems, just packaging existing approaches to

allow them to be seamlessly used in the generic

architecture).

4.4 Agent Deciding on Reconfigurability

Before changing one component, be it hardware, control

system, planning module, or decision strategy, the agent

itself must know what it is doing. In particular what the

current component offers, what the new component offers,

what the new component requires, how it interacts with

other components, etc. In addition, the agent must

dynamically decide on the filtering/abstraction of infor-

mation. One direction we are looking at is to use a high-

level ontology to describe such components that can be

used within complex engineering systems, for example

‘‘sEnglish’’ [21, 22]. This enables the designer to use nat-

ural language to specify the system, enabling then to focus

on the problem rather than learning a new semantic pro-

gramming language.
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Using sEnglish. sEnglish has been used to describe 
control systems, and has a semi-formal semantics. We 
are developing sEnglish as a clear and coherent cross- 
architecture mechanism for describing components.  
Current research asks: how effective is reconfiguration,  
based on sEnglish descriptions and, given a reconfig- 
uration strategy, how can we refine/reconfigure the ab- 
straction processes used? 

4.5 Nature of Reconfigurability Relations

Hardware, modules and high-level concepts may have

dependency relationships such as illustrated in the fol-

lowing diagram. These dependencies can be seen in the

interactions of the underlying components.

Here a continuous arrow means that an entry in the

block of the start of the arrow has a specification that it

provides to the entries in the block where the arrow ends.

On the other hand the end block entries provide capability

requirements for the entries in the starting block. However,

the two-way dashed arrows mean that the higher level

concepts are merely abstractions of the detailed modules.

The data for hardware, module, plan, perception and

learning objects are described via a high-level ontology and

the classes defined are used in sentences that activate

reconfiguration operations. For example, in sEnglish the

sentences used are illustrated as follows:

The meaning of each of these sentences is then descri-

bed by further sEnglish sentences, in terms of ontologically

defined concepts, until basic sentences have simple

meanings and associated high-level code.

4.6 Real Applications

Thus, we aim to develop, refine, and assess the reconfig-

urability of a generic agent architecture for autonomous

systems. Perhaps most importantly, we wish to adapt and

apply the approach in various different application areas.

This will allow us to refine the ideas/architecture, evaluate

its effectiveness, and produce interesting and useful dem-

onstrators. In this we are collaborating with real industrial

users who form the Autonomous and Intelligent Systems

Partnership within the UK. Working with these companies,

covering such a range of different autonomous systems,

and very distinct application areas, provides an ideal

opportunity for testing/evaluating our approach and, if
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successful, producing flexible and reliable practical

autonomous systems. Thus, a key part of our work is to

collaborate with industrial partners to see how practical

demonstrators can be built based on this architecture.

There are a range of possible applications, ranging

across the autonomous systems field, including planetary

rovers, autonomous satellites, robots exploring nuclear

sites, UAVs for civilian applications, autonomous indus-

trial processes, autonomous vehicles, etc. The industrial

partners will have first hand access to leading research in

these areas and will allow us to access practical autono-

mous systems.

4.7 University Demonstrators

While we rely on industrial collaborators for ‘‘industry

strength’’ autonomous systems, we also have a range of

demonstrators at our university labs. These will also pro-

vide initial testbeds for our techniques; see Fig. 2.

5 Related Work

To our knowledge, the scope of the problem outlined in

this position paper has not received substantial attention to

date. However, there exist a few examples that pose solu-

tions for a subset of the problem. Some important topics of

research that are covered by the current research endeavour

(but not limited to) are Autonomic Control Loops [6],

Autonomic Computing [26], Self-CHOP1, and Self-

Organising Component Based Software [25], which are all

intrinsically linked. These paradigms act to modularise

autonomy software, while maintaining system-wide

autonomous capabilities. They provide good examples and

a starting point for this project.

IBM proposed the Monitor, Analyse, Plan, Execute,

Knowledge (MAPE-K), loop to provide an architecture for

introducing autonomic computing [6]. This is computing

that mimics the ability of the human body to regulate itself.

A system is broken down in a similar way to a traditional

control system, where the software itself, the aspect man-

aged, forms the plant. Sensors record behaviour within the

environment, for example network or memory usage, and

effectors make adjustment to the environment to meet

given goals, for example adding servers to increase

capacity. Sensors feed information into the MAPE-K loop.

Effectors act on decisions taken by an autonomic manager

which contains the MAPE-K loop. The MAPE-K loop

holds knowledge about the operation of the system, enco-

ded as rules that it can use to alter behaviour. Monitoring

processes, watch the state of the world using sensor

information, which is analysed in conjunction with

knowledge of the system before new plans can be made to

be pushed back to effectors by executing code.

For example the ABLE toolkit [7] has been imple-

mented as a multi-agent system in Java to monitor web

servers. Valetto and Kaiser [19] have worked on a system

of retrofitting autonomic computing onto legacy hardware

[20]. This work focuses on where data should come from to

allow the adaptation process to happen, specifically it

focuses on sensors and execution of plans. One area this

work does not consider is how adaptation planning will be

conducted.

Fig. 2 Sample of autonomous

vehicles available in our labs

1 Self-CHOP = The four self-properties: Self-Configuration, Self-

Healing, Self-Optimisation and Self-Protection
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In July 2004, CNES and ONERA started upon a common

research program on autonomy for space systems. The

product was Autonomy Generic Architecture, Tests and

Application (AGATA) [3, 4]. AGATA is a autonomous

architecture focused on the issues of maintaining a high

level of autonomy while attempting to incorporate generic-

ity, modularity, and autonomicity (in particular self-organi-

sation). The modules are built on the basis of a common

pattern, and connected together to form an architecture.

Each module controls a part of the system, and is built upon

a sense/decide/act pattern. Modules maintain their own

knowledge and controls based upon an internal UML

description. The architecture is overseen by the generic

control module, which acts to connect and configure mod-

ules to complete the architecture overall goal, based upon

the UML descriptions and the communication request of the

modules. AGATA also provides methods for validation and

verification, and fault detection, isolation and recovery for a

generic modular autonomous architecture. AGATA dem-

onstrates on-line reactive and deliberative reconfiguration

method for autonomous software, which can deal with

complex decentralised architectures. However, there exists

no method to deal with hardware; the internal description of

modules lacks expressiveness; and the system has a limited

ability to diagnose compound faults that arise from modules

interacting.

Another architecture (herein known as RDA) that aims

for self-reconfiguration of autonomous modular software is

proposed in [9]. The modules in RDA are described by

UML components diagrams and Datalog, similar to the

method of AGATA. However, unlike AGATA the modules

can have a very generic definition and all their action and

interconnection are determined by a centralised controller.

The controller acts in a monitor, analyse, plan, and recon-

figure loop, and thus is broken into three sub-controllers: the

‘‘Monitor’’ which is in charge of collecting, filtering, and

normalising events and logs; the ‘‘Diagnoser’’ which iden-

tifies failures and discovers root causes; and the ‘‘Reconfi-

gurator’’ which selects, plans and deploys ‘‘compensation

actions’’ in response to failures. The reconfiguration is then

achieved using requirement engineering techniques. How-

ever, this system lacks the ability to deal with hardware, is

limited by its ability to describe and monitor modules, and is

limited by its monolithic and deliberative nature.

6 Summary

While the need for autonomous systems that can act

intelligently without direct human intervention is increas-

ing, traditional adaptive control regimes are often ad-hoc

and opaque to deep analysis. Furthermore they do not take

into account the vital new aspect of truly autonomous

systems, namely having explicit high-level justifications for

the autonomous choices made.

In practical autonomous systems, such as autonomous

vehicles, the idea of having an agent-based hybrid archi-

tecture is gaining traction. This separates out the high-level

autonomous decision-making from continuous control

components, not only making the decision strategy verifi-

able [2], but allowing a modular approach to the archi-

tecture. Once components can be added or removed, then

the high-level rational agent must be able to reason about

the requirements and consequences of such changes; this

provides high-level description and analysis of reconfigu-

rability. As well as reasoning about the decisions taken

behind any reconfiguration it should be able to effectively

communicate these decisions back to the system operators.

This closes the loop around the design process but provides

an important view to remove any opacity within the

reconfiguration process.

In our ongoing research, described in this position paper,

we aim to provide an open-source rational agent architec-

ture that controls autonomous decision-making, is re-usable

and generic (and so can be configured for many different

autonomous platforms); whose agent core is potentially

verifiable; and that is dynamically reconfigurable—not only

mission goals, but also capabilities, control sub-systems, or

hardware can be removed/added at run time.

Project web page: http://www.csc.liv.ac.uk/RAIS
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tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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