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Abstract

Organ motion as a result of respiratory and cardiac motion poses significant challenges for the accurate delivery of radiotherapy to both the thorax and the
upper abdomen. Modern imaging techniques during radiotherapy simulation and delivery now permit better quantification of organ motion, which in turn
reduces tumour and organ at risk position uncertainty. These imaging advances, coupled with respiratory correlated radiotherapy delivery techniques, have led
to the development of a range of approaches to manage respiratory motion. This review summarises the key strategies of image-guided respiratory motion
management with a focus on lung and liver radiotherapy.

© 2020 The Royal College of Radiologists. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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advances in radiotherapy and the widespread use and
availability of online three- and four-dimensional imaging
techniques, modern image-guided radiotherapy (IGRT) has
undergone seismic changes over the last two decades. In
particular, advances in IGRT have enabled a transformation
in the assessment and accounting of respiratory motion
during radiotherapy.

Respiratory motion and how it affects internal organs
poses challenges in the treatment of lesions located within
the thorax and upper abdomen, while the use of breath-
hold is approaching standard of care to reduce pulmonary
and cardiac toxicity in breast irradiation [2,3]. Furthermore,
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relies on the addition of large planning margins to allow
for respiratory motion. These population-based margins
have led to some patients being unable to receive
curative-intent radiation, given that the large margins
required to account for respiratory motion impose a
reduction of prescription dose below radical levels to
keep organ at risk (OAR) toxicity risks at an acceptable
level.

Modern Image-guided Radiotherapy and
Respiratory Motion Management

Modern image guidance includes imaging along the
entire radiotherapy pathway from the utilisation of contrast
computed tomography (CT), positron emission tomogra-
phy/computed tomography (PET/CT) and magnetic reso-
nance imaging (MRI) in tumour diagnosis and staging,
through planning simulation, target and OAR outlining and
daily in-room imaging, to the monitoring of radiotherapy
response in ongoing patient follow-up [10]. However, more
specifically and for the purpose of this review, IGRT relates
to its use during simulation, planning and delivery of
radiotherapy.

Modern IGRT has enabled the accurate measurement of
respiratory motion at various stages of treatment. Motion
amplitude during planning can be compared with daily
online assessment [9,11,12] and intrafractional variation in
respiratory motion can also be measured [8]. This has led to
improvements in the accuracy of target volume definition,
which has increased confidence in planning target volume
(PTV) margin reduction [13]. In parallel, it has also allowed
the development of methods to optimise accurate radio-
therapy delivery, adjusting and accounting for the respira-
tory motion identified on a daily basis during treatment
[14]. As a result, these improvements have led to the ability
to offer conventional radical radiotherapy treatments to
more bulky tumours and tumours in previously untreatable
locations with daily IGRT and online correction, allowing for
confidence in dose delivery to the target and avoidance of
adjacent critical structures with reduced margins [15,16].

Furthermore, advances in the delivery of highly
conformal intensity-modulated radiotherapy with a steep
dose gradient using multiple beams or arcs has facilitated
dose escalation and acceleration to treat tumours to a
higher biological effective dose, including hypofractionated
stereotactic ablative body radiotherapy (SABR/SBRT) [17,18].

Clinical Impact of Image-guided
Radiotherapy and Respiratory Motion
Management in Lung and Liver Treatments

Lung-specific Clinical Issues for Image-guided Radiotherapy
and Respiratory Motion

In addition to patient-specific factors affecting respira-
tory motion, including anxiety, depth of breathing and un-
derlying respiratory or medical conditions, lung tumour

motion is also influenced by tumour location, size and any
effect on adjacent lung, such as atelectasis or reactive ef-
fusions [19]. In general, the greatest range in tumour motion
is seen with peripheral and lower lobe lung lesions [5]. In
their study of 20 patients, Seppenwoolde et al. [5] reported
a mean motion range for lung lesions of 5.8, 2.5 and 1.5 mm
in the cranio-caudal, anterior—posterior and left—right di-
rections, respectively. Hysteresis was observed in half of the
patients, with four of 20 patients having more than 2 mm
separation between mid-inhale and mid-exhale. For locally
advanced lung cancers, the extent of respiratory motion
may vary between the primary tumour and the often more
fixed central involved lymph nodes [20]. Schmidt et al. [21]
looked at 10 lung patients with between two and four fi-
ducials inserted into the lymph node target with daily
pretreatment cone-beam CT (CBCT) and showed that res-
piratory motion was largest in the cranio-caudal direction,
especially in the more caudal lymph nodes [21]. The impact
of lymph node motion is less affected by cardiac motion,
which is reported to be most prominent in the
anterior—posterior direction and more so in the cranial
lymph nodes [20].

Although important for conventional radiotherapy de-
livery, RMM is essential for the safe delivery of SABR for
both early stage lung primaries and lung oligometastases.
The ablative higher dose per fraction of SABR necessitates
higher accuracy [17]. Using reduced encompassing margins
for ablative treatment with SABR has permitted the safe
delivery of higher radiation doses, which has led to
improved outcomes with SABR over conventional radical
radiotherapy for early lung primaries [22] and overall sur-
vival improvements in the treatment of oligometastatic
disease [23].

Liver-specific Clinical Issues for Image-guided Radiotherapy
and Respiratory Motion

Liver tumours may move up to several centimetres due
to respiration [6,24], while substantial rotations and de-
formations have also been reported [25—27].

Previously, the combination of poor visualisation of
liver lesions on planning CT, the need to account for liver
motion with large planning margins and the resultant
risk of toxicity, both to the liver and to adjacent mobile
deformable OAR (e.g. small bowel), precluded the safe
delivery of radical or disease-modifying doses of radio-
therapy. Over recent years, a number of advances have
helped change this paradigm, namely the advent of SABR,
the use of MR simulation to aid delineation and routine
implementation of RMM strategies for treatment
delivery.

A number of studies have shown liver SABR to result in
excellent rates of local control for both primary hepato-
cellular carcinoma and liver metastases with a favourable
toxicity profile [28,29]. Liver SABR may be used in patients
unsuitable for surgery or interventional techniques, such
as radiofrequency ablation. In hepatocellular carcinoma,
SABR has been shown to be effective as a bridging therapy
to transplant [30]. SABR is particularly useful for treating
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tumours technically unsuitable for radiofrequency ablation
due to location (near the diaphragm or large vessels) or
size (>3 cm) and has been shown to have comparable
efficacy [31].

The dose-limiting organs are the uninvolved liver for
central lesions and adjacent gastrointestinal OAR for pe-
ripheral tumours. The phase I trial of SABR for liver me-
tastases by Schefter et al. [32] adopted the ‘critical
volume model’ where at least 700 ml normal liver had to
receive a total dose of less than 15 Gy. Advanced motion
management strategies that enable margin reduction
facilitate a dose-escalation approach. Gargett et al. [33]
retrospectively carried out a planning study on 20 liver
SABR patients and found that when respiratory motion
was eliminated by contouring the GTV in expiration
phase only, it allowed dose escalation in 11 of 13 patients
using the no-motion PTV and increased tumour control
probability.

Even with RMM and IGRT, tumour visibility on CT im-
aging without contrast remains very difficult within the
liver when surrounded by soft tissue of similar density. The
use of fiducials and the role of MRI in planning and during
treatment with its improved soft tissue contrast to CT may
improve this further [34].

Technical Aspects of Respiratory Motion
Management

RMM techniques are as complex as they are numerous,
driven by large inter-patient variability in tumour motion
trajectories across highly heterogeneous populations. In

general, they can be categorised according to the AAPM task
group report 76 (Figure 1) [14]:

) motion-encompassing techniques;

) forced shallow breathing techniques;
(iii) respiratory-gated techniques;

) breath-hold techniques;

) respiratory-synchronisation techniques.

Motion-encompassing techniques (or internal target
volume) and forced shallow breathing (or abdominal
compression) are passive approaches, whereas respiratory
gating, in free-breathing or in breath-hold, and respiratory-
synchronisation (or tracking) are active approaches where
variations in breathing patterns are considered in real-time.
There is also growing interest in assisted breathing tech-
niques, such as high-frequency non-invasive ventilation to
obtain prolonged breath-hold with facilitated compliance
[35]. Robust treatment planning can also be used to manage
respiratory motion by incorporating the motion informa-
tion in the treatment plan optimisation [36].

Given the large variation in breathing patterns observed
in various populations [5—7,21,26,27,37,38], an individual
approach to RMM is recommended [14]. As such, the mo-
tion pattern and potential compliance of each patient
should be evaluated to determine the best strategy.
Although forced shallow breathing aims to reduce respira-
tory motion amplitude, residual motion and poor repro-
ducibility of the compression level may still require large
margins [39,40]. Active RMM is therefore advised, if appli-
cable, when the breathing amplitude exceeds 5 mm and/or
if it can significantly improve OAR sparing or is needed to
achieve clinical goals [14].

Passive RMM || Active RMM
MidVent . . L Lo .

Breathing Internal target Or Compression Gating in Gating in Respiratory
level /amplitude  volume (ITV) MidPos + margin breath-hold free-breathing  synchronization

A
Inhale ‘
MidVent
MidPos
Exhale

v

Fig 1. Illustration of the different passive and active respiratory motion management strategies and associated margin definitions. The mid-
ventilation (MidVent) position is the closest available position to the time-weighted average position, the mid-position (MidPos). The Mid-
Vent anatomy is a representation of the patient at a certain state. However, generally, the MidPos anatomy is obtained by image processing and it

may not be a representation of the patient anatomy at any time point.
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Available Active Respiratory Motion Management Platforms

Intrafraction motion monitoring is an essential
component of active RMM and comes in many different
flavours [8]. Active RMM relies on the availability and
synergy of both monitoring and mitigation. On conven-
tional linacs, gating in free-breathing and breath-hold is
feasible using an external breathing surrogate (part of
the standard equipment) or add-on equipment (e.g.
surface monitoring, electromagnetic transponders).
Respiratory-synchronisation has only been demonstrated
in research settings so far [41], whereas inter-field couch
corrections (potentially combined with gating) are
readily applicable and can address gross dose deficit to
the target caused by baseline drift [42]. Respiratory-
synchronisation is commercially available on the ro-
botic Cyberknife (Accuray Inc, Sunnyvale, CA, USA) [43]
or the Vero (BrainLab AG, Feldkirchen, Germany and
Mitsubishi Heavy Industries, Tokyo, Japan; Vero is no

longer commercially available) [44] platforms. Both use
hybrid external/internal motion monitoring to guide the
synchronisation. The ViewRay MR-linac (Viewray Inc,
Cleveland, OH, USA) can be used for gating based on
MRI with visual feedback [45,46].

Intrafraction motion monitoring for active RMM has been
extensively described elsewhere, including considerations
on time delays and quality assurance [8,14,47—49]. Here we
emphasise the need for a consistent representation of the
patient model and RMM strategy throughout simulation,
planning, patient set-up and treatment delivery (Figure 2).

Imaging for Simulation

An accurate depiction of anatomical structures in the
pretreatment images for delineation and planning is
essential, as wrongful delineation leads to systematic er-
rors [50—52]. The presence of respiratory motion may
compromise image quality, leading to misrepresentations
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Fig 2. The different elements of respiratory motion management (RMM) in the radiotherapy workflow. Imaging elements are depicted in blue,
planning and RMM decision and actions in purple, potential errors are shown in green. Optional elements have a dotted border. 3D: three-
dimensional, 4D: four-dimensional, ABC: active breathing coordinator, BH: breath-hold, CBCT: cone-beam computed tomography, CT: computed
tomography, ITV: internal target volume, MR: magnetic resonnance, LN: lymph nodes, PET: positron emission tomography, PTV: planning target
volume, RMM: respiratory motion management, SPECT: single photon emission CT.
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of both volumes and locations. However, the images ac-
quired during simulation can also be a valuable source of
respiratory motion information and a pivotal point in its
management.

Respiratory correlated four-dimensional CT has become
standard of practice when respiratory motion is suspected. A
four-dimensional CT scan is acquired during free or coached
breathing and provides temporal information by over-
sampling projection data at each slice and subsequently
sorting the data according to the breathing phase or ampli-
tude based on an external surrogate signal [53—55]. From the
four-dimensional CT scan, the mid-ventilation (MidVent) CT
can be selected as the phase closest to the mean time-
weighted centre of mass of all tumour locations [56,57]. A
mid-position (MidPos) CT scan can be created via deformable
registration of all four-dimensional CT phases to the same
time-weighted mean position [58—60]. When four-
dimensional CT imaging is not available, slow CT or breath-
hold inhale—exhale CT can provide additional motion infor-
mation with respect to conventional three-dimensional CT
[61,62]. However these lack a clear representation of the full
motion trajectory in normal breathing and are harder to
interpret [63].

Comparable with four-dimensional CT, four-dimensional
PET/CT was developed as a promising method to reduce
respiratory motion artefacts in PET/CT imaging, present due
to its long acquisition times [64—66]. For similar reasons
and because of its superior soft-tissue contrast, several
respiratory correlated four-dimensional MRI techniques
have been developed, especially for moving lesions in the
abdomen, such as liver or kidneys [67,68]. Unfortunately,
clinical implementation of time-resolved PET/CT and MRI in
regular treatment workflow remains limited.

For liver simulation, contrast-enhanced CT is recom-
mended for target and OAR delineation. Multi-phase CT
(arterial, venous and delayed phases) may aid in tumour
visualisation, particularly for hepatocellular carcinoma,
which is typically hyperintense in the arterial phase and
hypointense in the venous or delayed phases. Contrast-
enhanced CT is often acquired in breath-hold but
contrast-enhanced four-dimensional CT is also possible
with careful timing of the contrast injection and acquisition
[69]. Fusion of a planning MRI scan, carried out in the
treatment position, to the CT scan may provide additional
information and certainty in tumour contouring.

In MR-guided radiotherapy (MRgRT), both a CT scan for
dose calculation purposes and a three-dimensional MRI
scan for patient positioning at the time of treatment are
acquired during simulation [70]. Through deformable
registration, the CT is registered to the MRI dataset before
treatment planning. The time between CT and MRI acqui-
sition should be short to minimise systematic errors and
anatomical variations. Alternatively, an MRI-only workflow
can be used, in which a synthetic or pseudo-CT is rendered
from the three-dimensional MRI [71].

On simulation images, PTV margins are added to account
for respiratory motion, as well as other sources of un-
certainties (delineation, set-up, interfractional changes,
machine errors, etc.). Active RMM aims to reduce the

apparent respiratory motion, therefore reducing the intra-
fractional component of the margins. The internal target
volume [72] corresponds to a linear addition of respiratory-
induced errors by encompassing the full range of motion
observed in a four-dimensional CT (Figure 1). However,
four-dimensional CT may not accurately represent the
motion present at treatment [9,11]. For respiratory-
synchronised techniques, the moving target volume was
proposed as an analogous concept to account for target
deformation/rotation while assuming perfect centroid mo-
tion compensation [73].

Population-based margin recipes using MidVent or
MidPos concepts take into account the random and/or
systematic nature of different error sources, as well as the
beam penumbra to ensure that a given proportion of the
population (typically 90% of the patients) receive a certain
minimum cumulative clinical target volume dose (typically
95% of the prescribed dose) [74—76](Figure 1). In hypo-
fractionated regimens, the number of fractions should be
taken into account because of the increased weight of set-
up uncertainties compared with conventional fraction-
ation [77].

Due to the density difference between the tumour and
the lung tissue found within the PTV, inverse optimisation
tends to cause an increased fluence at the PTV edge, which
can cause increased dose deposition as the tumour moves
within the PTV. This is typically mitigated using density
overrides during optimisation [78,79].

In-room Imaging

Once a treatment plan has been optimised for the chosen
RMM technique, treatment delivery is highly reliant on
reproducible patient positioning (Figure 2). Interfractional
anatomical changes may require a compromise in set-up
due to a difference in the relative position of target vol-
ume(s) and OAR or even an adaption of the original treat-
ment plan (online or offline) [34,80—82]. While passive
RMM approaches rely on consistent motion between
planning and treatment, the accuracy of the gating pro-
cedure (free-breathing or breath-hold) relies on the repro-
ducibility of the breathing level and gating window
parameters chosen at planning requiring the same moni-
toring or ventilation systems to be available at simulation
and at treatment. Therefore, imaging for patient set-up
verification and during beam delivery is paramount in
active RMM. The different in-room imaging modalities for
set-up verification and intrafraction monitoring are listed in
Table 1.

Even with accurate patient set-up [83,84], important
internal displacement of the tumour may still occur
[85—87]. Set-up based on volumetric imaging such as CBCT
[88] has therefore become the standard of care. Due to the
acquisition time (~1 min) being 10—25 times longer than
the typical breathing period, significant blurring of the
anatomy occurs, which compromises the registration pro-
cess. This has motivated the development of four-
dimensional (or correlated) CBCT [89—91] or gated CBCT
[92]. For lung or oesophageal tumours, often visible on the
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Table 1

In-room imaging modalities available for image-guided radiotherapy

Modality Volumetric lonising Real-time (>2 Hz [13]) Additional Observations
equipment

kV/MV fluoroscopy No Yes Yes (=1-10 Hz) No High geometric fidelity, isocentric with
respect to linac, MV image quality lower
than kV. Fiducial may be needed.

CBCT Yes Yes No (acquisition time =1 min) No Blurry structures due to motion

Four-dimensional CBCT Yes Yes No (acquisition time >1 min) No Less blurry than CBCT. >1 reconstructed
volume. Possible streaking due to view
aliasing.

Gated CBCT Yes Yes No (acquisition time >1 min) No Less blurry than CBCT. Less dose than four-
dimensional CBCT. 1 reconstructed volume.

Surface imaging No No Yes (up to =30 Hz) Yes Three-dimensional surface with 6 degrees of
freedom displacement information

Hybrid (ExacTrac, No Yes Yes (up to =30 Hz) Yes Compromise between imaging dose and

Synchrony) reliance on internal—external correlation.
MR Yes No Yes for two-dimensional Yes Excellent soft-tissue contrast. Compromise
(=1-4 Hz) in spatial versus temporal resolution.

Dedicated machine (MR-linac) or MR-suite.
No electron density information.

On-rail computed Yes Yes No Yes High image quality. Electron density

tomography information.

CBCT, cone-beam computed tomography; MR, magnetic resonance.

(four-dimensional) CBCT, soft tissue match permits highly
accurate set-up correction [7,87]. Lymph nodes are, how-
ever, more difficult to visualise and may move relative to the
primary tumour requiring the use of the carina or station-
specific anatomical landmarks as surrogates for their posi-
tion [93,94]. Anatomical landmarks for abdominal tumours
have only limited accuracy [95].

Fiducial markers may be implanted percutaneously or
endoscopically in thoracic or abdominal sites [96],
providing a radio-opaque surrogate for the tumour position
under X-ray guidance. Fiducials are mandatory to enable
respiratory-synchronisation on the Cyberknife platform for
liver. Fiducial implantation is a specialised procedure
causing delays to the start of treatment. Although local-
isation through fiducials is relatively robust [97,98], percu-
taneous implantation is invasive, uncomfortable for the
patient and carries a risk of pneumothorax or bleeding
[99—101]. Bronchoscopic implantation in the lung is less
invasive but often results in larger marker to tumour dis-
tances, reducing accuracy [95]. Furthermore, due to blurring
and streaking artefact on reconstructed three-dimensional
imaging, delineation on CT may be challenging and auto-
matic registration of the markers between a (four-dimen-
sional) CBCT and planning (four-dimensional) CT is often
unfeasible [102]. In trajectory-based set-up, the mean
marker position during CBCT can be calculated precisely
and directly compared with the expected position from the
planning CT to calculate the set-up correction [102,103],
potentially including rotational correction [104].

Gating (breath-hold or free-breathing) on conventional
linacs is most often guided by an external marker bloc
detected by an infrared ceiling-mounted camera [105]. The
same marker and camera system has to be installed in the
CT simulation room for consistent gating parameter setting.
However, this consistency is compromised by respiratory

pattern changes between simulation and each subsequent
treatment fraction. Fluoroscopy can be used to evaluate
respiratory motion before treatment for gating with manual
or automatic gating parameter settings [103,106]. Inter-
mittent intrafraction fiducial imaging with an auto-beam
hold feature was recently introduced in clinical use [107].
Gating using stereoscopic KV imaging of markers in several
sites [108] or electromagnetic transponders in lungs [109]
and liver [110,111] has also been reported. The surrogacy
error of fiducials should be taken into account in the safety
margins, especially when the markers are located outside of
the tumour [85,95]. Yet, because markers are well-defined,
small geometric objects, their positions are more precisely
defined than deforming tissue.

For breath-hold gating using the active breathing coor-
dinator system (Elekta AB, Stockholm Sweden), the
breathing level and maximum breath-hold duration are
typically determined based on patient compliance [112].
Both planning CT and treatment delivery are carried out at
the set breath-hold level. Surface imaging is used mostly for
voluntary (deep)-inspiration breath-hold breast radio-
therapy [105,113]. The planning CT is acquired in (deep)-
inspiration breath-hold and the skin surface contour is sent
to the surface imaging system to determine a region of in-
terest to serve as reference during treatment. Gating toler-
ances are set for both translation and rotation of the
reference surface.

On the ExacTrac (BrainLab) system, external optical
markers used to trigger beam gating are in place during CT
simulation. A rigid relationship between the internal
target position, represented by fiducials, and the optical
markers at the desired gating level is assumed. Online, the
gating level and window are set during a pretreatment
phase using simultaneous monitoring of the external op-
tical markers and the internal fiducials, via stereoscopic
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optical and kV imaging, respectively [114]. Gating is
guided by external monitoring. When the external moni-
toring matches the gating level, stereoscopic kV images
are acquired to verify the validity of the rigid-relationship
assumption.

On the Cyberknife or Vero platforms, the patient is set-up
using kV imaging, then a correlation model is established
during a pretreatment phase of simultaneous external op-
tical monitoring and internal monitoring by stereoscopic
fiducial [43,44] or tumour [115] kV imaging. During treat-
ment delivery, respiratory-synchronisation is guided by the
external signal using the correlation model and intermit-
tent stereoscopic imaging is used to verify the validity of the
correlation model. In case of discrepancy, the treatment can
be interrupted and the correlation model rebuilt.

Patient set-up is a relatively complex and time-
consuming part of the MRgRT workflow. The range of
possible couch corrections is often more constricted and
conventional fixation devices might not be used to increase
the proximity of imaging tools [116,117]. Pretreatment im-
aging consists of volumetric MRI, either in breath-hold or
free-breathing, depending on the available technology and
patient compliance. When gating is available, a preview
cine-MRI is acquired at the beginning of each fraction to
define the gating structure, which can either be the target or
an OAR, a margin and the threshold defining beam-off.

Online MRI at an imaging frequency sufficient for respi-
ratory motion monitoring is currently limited to two-
dimensional cine-MRI, at 4 frames/s and with a latency in
the order of 350 ms on the Viewray MRIdian system
[70,118,119]. Its technical feasibility, in combination with
MLC-tracking or tumour trailing, has been shown recently
on the Elekta Unity, with similar imaging parameters
[120,121].

Imaging Dose

The increase in imaging procedures in both simulation
and delivery has required the radiotherapy community to
take a more thorough and quantitative approach in evalu-
ating imaging dose [122]. Using modern acquisition tech-
niques, a pretreatment four-dimensional CT causes an
increase in imaging dose of between three and eight times
the dose of a conventional three-dimensional CT. Often, a
second scan is acquired including implanted fiducials, de-
vices to restrict the respiratory motion, etc. [123]. First re-
ports on the use of four-dimensional CBCT indicate a two-
fold increase in imaging dose compared with three-
dimensional CBCT [124].

Imaging dose calculations, when applicable, are rarely
reported for CT-guided fiducial implantation and probably
differ widely between institutions and specialists [125].
External surrogates reduce the need for high-frequency
imaging during delivery, but require a correlation model
to be built before each fraction with additional updates or
complete rebuilds during [126]. Reported imaging doses per
build differ, with mean skin doses ranging from several
mGy to cGy depending on the institution-specific workflow
and technologies used [124,127].

Considering the amount of image guidance during RMM
set out in the previous section, the concomitant imaging
dose during active RMM is high, especially for SABR treat-
ments. However, the additional image guidance during
active RMM often results in reduced margins and/or smaller
target volumes, reducing the high-dose volume. The latter
may be of higher importance for this particular patient
population than the imaging dose, as it leaves more room
for reirradiation or treatment in the oligometastatic sce-
nario [48].

EPID imaging using the treatment beam could avoid
additional X-ray image acquisition, but its use is limited by
poor image contrast and the popularity of high beam
modulation leading to limited fields of view [128—130].
More promising solutions in terms of imaging dose reduc-
tion for tumour localisation include, but are not limited to,
implanted electromagnetic transponders [109,131], ultra-
sound [132] or real-time MRgRT [133].

Main Remaining Challenges

In spite of the advances in RMM IGRT described above,
challenges remain. Key to RMM IGRT is the acquisition and
online analysis of multiple imaging datasets. Although
dedicated computer software has reduced the need for
human input for many of the analyses of these imaging
datasets, if we are to fully accomplish daily RMM IGRT,
clinician input will be needed for each fraction delivered
and this may limit implementation.

Three-dimensional internal target monitoring has been
limited to specialised equipment so far [134], thereby also
limiting applications of active RMM mostly to external
marker-guided gating [105]. Fiducial placement in the lung
remains challenging and is not used outside highly speci-
alised centres. Alternatively, active RMM without fiducials
requires imaging with improved soft-tissue contrast during
treatment, such as with the MR-linac.

Finally, the different motion between target and OAR
remains an unresolved problem. In particular, if a tumour
moves closer to an OAR, or if OARs are moving into the
gating window, this may increase the risk of toxicity. More
comprehensive motion models [135] and real-time dose
reconstruction are needed to quantify those -effects
[73,136,137].

Conclusions

Respiratory motion remains a key challenge for IGRT in
the thorax and upper abdomen. Modern imaging tech-
niques during radiotherapy simulation and to guide
respiratory-correlated delivery significantly reduce tumour
and OAR position uncertainty and should be a standard of
care in curative-intent treatment for thoracic and abdom-
inal tumours. Advances in IGRT have already permitted an
expansion of curative-intent indications in lung and liver
treatments, notably the use of SABR in the oligometastatic
setting. Real-time RMM has the potential to further reduce
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margins, opening the door to new indications for dose in-
tensifications such as for pancreatic tumours, ultracentral
lung tumours or locally advanced disease. Novel technolo-
gies such as MR-linac may further improve respiratory
motion quantification and thus both lung and liver IGRT.
However, more widely available solutions on conventional
equipment are necessary to make active RMM a standard of
care.
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