1,866 research outputs found

    Extracting Muon Momentum Scale Corrections for Hadron Collider Experiments

    Full text link
    We present a simple method for the extraction of corrections for bias in the measurement of the momentum of muons in hadron collider experiments. Such bias can originate from a variety of sources such as detector misalignment, software reconstruction bias, and uncertainties in the magnetic field. The two step method uses the mean for muons from $Z\to \mu\mu$ decays to determine the momentum scale corrections in bins of charge, $\eta$ and $\phi$. In the second step, the corrections are tuned by using the average invariant mass of ZμμZ\to \mu\mu events in the same bins of charge η\eta and ϕ\phi. The forward-backward asymmetry of Z/γμμZ/\gamma^{*} \to \mu\mu pairs as a function of μ+μ\mu^+\mu^- mass, and the ϕ\phi distribution of ZZ bosons in the Collins-Soper frame are used to ascertain that the corrections remove the bias in the momentum measurements for positive versus negatively charged muons. By taking the sum and difference of the momentum scale corrections for positive and negative muons, we isolate additive corrections to 1/pTμ1/p^\mu_T that may originate from misalignments and multiplicative corrections that may originate from mis-modeling of the magnetic field (BdL)(\int \vec{B} \cdot d\vec{L}). This method has recently been used in the CDF experiment at Fermilab and in the CMS experiment at the Large Hadron Collider at CERNComment: 6 pages, 3 figures, to be published in EPJC 201

    A High Statistics Search for Electron-Neutrino --> Tau-Neutrino Oscillations

    Full text link
    We present new limits on nu_e to nu_tau and nu_e to nu_sterile oscillations by searching for electron neutrino dissappearance in the high-energy wide-band CCFR neutrino beam. Sensitivity to nu_tau appearance comes from tau decay modes in which a large fraction of the energy deposited is electromagnetic. The beam is composed primarily of muon neutrinos but this analysis uses the 2.3% electron neutrino component of the beam. Electron neutrino energies range from 30 to 600 GeV and flight lengths vary from 0.9 to 1.4 km. This limit improves the sensitivity of existing limits and obtains a lowest 90% confidence upper limit in sin**2(2*alpha) of 9.9 x 10**(-2) at delta-m**2 of 125 eV**2.Comment: submitted to Phys. Rev. D. Rapid Com

    A measurement of alphas(Q2)alpha_s(Q^2) from the Gross-Llewellyn Smith Sum Rule

    Full text link
    We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared (Q2Q^{2}), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for 1<Q2<15GeV2/c21 < Q^2 < 15 GeV^2/c^2. A comparison with the order αs3\alpha^{3}_{s} theoretical predictions yields a determination of αs\alpha_{s} at the scale of the Z-boson mass of 0.114±.012.0090.114 \pm^{.009}_{.012}. This measurement provides a new and useful test of perturbative QCD at low Q2Q^2, because of the low uncertainties in the higher order calculations.Comment: 4 pages, 4 figure

    A search for resonant production of ttˉt\bar{t} pairs in $4.8\ \rm{fb}^{-1}ofintegratedluminosityof of integrated luminosity of p\bar{p}collisionsat collisions at \sqrt{s}=1.96\ \rm{TeV}$

    Get PDF
    We search for resonant production of tt pairs in 4.8 fb^{-1} integrated luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay channel, where one top quark decays leptonically and the other hadronically. A matrix element reconstruction technique is used; for each event a probability density function (pdf) of the ttbar candidate invariant mass is sampled. These pdfs are used to construct a likelihood function, whereby the cross section for resonant ttbar production is estimated, given a hypothetical resonance mass and width. The data indicate no evidence of resonant production of ttbar pairs. A benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} < 900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201

    Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set

    Get PDF
    We combine the results of searches for the standard model Higgs boson based on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar collisions at the Fermilab Tevatron corresponding to an integrated luminosity of 9.45/fb. The searches are conducted for Higgs bosons that are produced in association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and decay into bb pairs. An excess of data is present that is inconsistent with the background prediction at the level of 2.5 standard deviations (the most significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based on comments from PRL

    Measurement of the WZWZ Cross Section and Triple Gauge Couplings in ppˉp \bar p Collisions at s=1.96\sqrt{s} = 1.96 TeV

    Get PDF
    This Letter describes the current most precise measurement of the WZWZ production cross section as well as limits on anomalous WWZWWZ couplings at a center-of-mass energy of 1.96 TeV in proton-antiproton collisions for the Collider Detector at Fermilab (CDF). WZWZ candidates are reconstructed from decays containing three charged leptons and missing energy from a neutrino, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector (7.1 fb1^{-1} of integrated luminosity), 63 candidate events are observed with the expected background contributing 8±18 \pm 1 events. The measured total cross section σ(ppˉWZ)=3.930.53+0.60(stat)0.46+0.59(syst)\sigma (p \bar p \to WZ) = 3.93_{-0.53}^{+0.60}(\text{stat})_{-0.46}^{+0.59}(\text{syst}) pb is in good agreement with the standard model prediction of 3.50±0.213.50\pm 0.21. The same sample is used to set limits on anomalous WWZWWZ couplings.Comment: Resubmission to PRD-RC after acceptance (27 July 2012

    Measurement of branching ratio and Bs0 lifetime in the decay Bs0 -> J/psi f0(980) at CDF

    Full text link
    We present a study of Bs0 decays to the CP-odd final state J/psi f0(980) with J/psi -> mu+ mu- and f0(980) -> pi+ pi-. Using ppbar collision data with an integrated luminosity of 3.8/fb collected by the CDF II detector at the Tevatron we measure a Bs0 lifetime of tau(Bs0 -> J/psi f0(980)) = 1.70 -0.11+0.12(stat) +-0.03(syst) ps. This is the first measurement of the Bs0 lifetime in a decay to a CP eigenstate and corresponds in the standard model to the lifetime of the heavy Bs0 eigenstate. We also measure the product of branching fractions of Bs0 -> J/psi f0(980) and f0(980) -> pi+ pi- relative to the product of branching fractions of Bs0 -> J/psi phi and phi -> K+ K- to be R_f0/phi = 0.257 +_0.020(stat) +-0.014(syst), which is the most precise determination of this quantity to date.Comment: accepted by Phys. Rev.
    corecore