188 research outputs found

    Automatic Software Tailoring for Optimal Performance

    Get PDF
    Efficient green software solutions require being aware of the characteristics of both the software and the hardware where it is executed. Separately optimizing them leads to inefficient results, and there is a need for a perfect synergy between software and hardware for optimal outcomes. We present a novel combinatorial optimization problem for the minimization of the software execution time on a specific hardware, taking into account the existing uncertainty in the system. A solution to the problem is a sequence of LLVM code transformations, and a cellular genetic algorithm is used to find it. Assuming that hardware does not change, reducing the software runtime typically leads to a greener version with lower consumption. To cope with the uncertainty, two novel approaches relying on bootstrap method to compute confident intervals of the software runtime at negligible cost are proposed and compared to three other techniques and -O3 Clang compilation flag over four hardware architectures. Results show how the proposed approach effectively copes with the uncertainty, providing more robust solutions with respect to the compared methods. The execution time of the raw program is reduced from 28.1% to up to 63.2%, outperforming -O3 flag by 13.9% to 26.3%, for the different architectures.This work was supported by the Junta de AndalucÍa and ERDF (GENIUS – P18-2399), the Spanish Ministerio de Ciencia, Innovación y Universidades and ERDF (NEMOVISION– PID2019-109465RB-I00) and ERDF (OPTIMALE – FEDERUCA18-108393). This publication is part of TED2021-131880B-I00 project (eFracWare), funded MCIN/AEI/10. 13039/501100011033 and the European Union “NextGenerationEU”/PRTR and project eMob (PID2022-137858OBI00) funded by Spanish MCIN, the AEI and the ERDF on MCIN/AEI/10.13039/501100011033/FEDER, UE. This work was partially supported by the Spanish Ministry of Science and Innovation and ERDF (RED2018-102472-T). J.C. de la Torre and J.M. Aragón-Jurado would like to acknowledge the Spanish Ministerio de Ciencia, Innovación y Universidades for the support through FPU17/00563 and FPU21/02026 grants, respectively. J.M. Aragón-Jurado acknowledges the grant from Plan Propio - UCA 2022-2023. B. Dorronsoro and P. Ruiz acknowledge “ayuda de recualificación” funded by Ministerio de Universidades and the European Union-NextGenerationE

    Gendering international student migration: an Indian case-study

    Get PDF
    Despite the mainstreaming of gender perspectives into migration research, very few attempts have been made to gender international student migration. This paper poses three questions about Indian students who study abroad. Are there gender differences in their motivations? How do they negotiate their gendered everyday lives when abroad? Is the return to India shaped by gender relations? An online survey of Indian study-abroad students (n = 157), and in-depth interviews with Indian students in Toronto (n = 22), returned students in New Delhi (n = 21), and with parents of students abroad (n = 22) help to provide answers. Conceptually, the paper draws on a ‘gendered geographies of power’ framework and on student migration as an embodied process subject to ‘matrices of (un)intelligibility’. We find minimal gender-related differences in motivations to study abroad, except that male students are drawn from a wider social background. However, whilst abroad, both male and female Indian students face challenges in performing their gendered identities. The Indian patrifocal family puts greater pressure on males to return; females face greater challenges upon return

    A Retrospective Case Series Analysis of the Relationship Between Phenylalanine: Tyrosine Ratio and Cerebral Glucose Metabolism in Classical Phenylketonuria and Hyperphenylalaninemia.

    Get PDF
    We retrospectively examined the relationship between blood biomarkers, in particular the historical mean phenylalanine to tyrosine (Phe:Tyr) ratio, and cerebral glucose metabolism. We hypothesized that the historical mean Phe:Tyr ratio would be more predictive of cerebral glucose metabolism than the phenylalanine (Phe) level alone. We performed a retrospective case series analysis involving 11 adult classical phenylketonuria/hyperphenylalaninemia patients under the care of an Inherited Metabolic & Neuropsychiatry Clinic who had complained of memory problems, collating casenote data from blood biochemistry, and clinical [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG PET). The Phe:Tyr ratio was calculated for individual blood samples and summarized as historical mean Phe:Tyr ratio (Phe:Tyr) and historical standard deviation in Phe:Tyr ratio (SD-Phe:Tyr), for each patient. Visual analyses of [18F]FDG PET revealed heterogeneous patterns of glucose hypometabolism for eight patients. [18F]FDG PET standardized uptake was negatively correlated with Phe in a large cluster with peak localized to right superior parietal gyrus. Even larger clusters of negative correlation that encompassed most of the brain, with frontal peaks, were observed with Phe:Tyr, and SD-Phe:Tyr. Our case series analysis provides further evidence for the association between blood biomarkers, and cerebral glucose hypometabolism. Mean historical blood Phe:Tyr ratio, and its standard deviation over time, appear to be more indicative of global cerebral glucose metabolism in patients with memory problems than Phe

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes

    Get PDF
    BACKGROUND: Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. METHODOLOGY/PRINCIPAL FINDINGS: We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments

    TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms

    Get PDF
    [EN] Objective Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer usually arising on a background of chronic liver injury involving inflammatory and hepatic regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM-2) is predominantly expressed in hepatic non-parenchymal cells and inhibits Toll-like receptor signalling, protecting the liver from various hepatotoxic injuries, yet its role in liver cancer is poorly defined. Here, we investigated the impact of TREM-2 on liver regeneration and hepatocarcinogenesis. Design TREM-2 expression was analysed in liver tissues of two independent cohorts of patients with HCC and compared with control liver samples. Experimental HCC and liver regeneration models in wild type and Trem-2-/- mice, and in vitro studies with hepatic stellate cells (HSCs) and HCC spheroids were conducted. Results TREM-2 expression was upregulated in human HCC tissue, in mouse models of liver regeneration and HCC. Trem-2-/- mice developed more liver tumours irrespective of size after diethylnitrosamine (DEN) administration, displayed exacerbated liver damage, inflammation, oxidative stress and hepatocyte proliferation. Administering an antioxidant diet blocked DEN-induced hepatocarcinogenesis in both genotypes. Similarly, Trem-2-/- animals developed more and larger tumours in fibrosis-associated HCC models. Trem-2-/- livers showed increased hepatocyte proliferation and inflammation after partial hepatectomy. Conditioned media from human HSCs overexpressing TREM-2 inhibited human HCC spheroid growth in vitro through attenuated Wnt ligand secretion. Conclusion TREM-2 plays a protective role in hepatocarcinogenesis via different pleiotropic effects, suggesting that TREM-2 agonism should be investigated as it might beneficially impact HCC pathogenesis in a multifactorial manner.Spanish Ministry of Economy and Competitiveness and ’Instituto de Salud Carlos III’ grants (MJP (PI14/00399, PI17/00022 and Ramon y Cajal Programme RYC-2015–17755); JMB (PI12/00380, PI15/01132, PI18/01075, Miguel Servet Programme CON14/00129 and CPII19/00008) cofinanced by ’Fondo Europeo de Desarrollo Regional’ (FEDER); CIBERehd: MJP, JMB and LB), Spain; IKERBASQUE, Basque foundation for Science (MJP and JMB), Spain; ’Diputación Foral de Gipuzkoa’ (MJP: DFG18/114, DFG19/081; JMB: DFG15/010, DFG16/004); BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/ BD to JMB); Department of Health of the Basque Country (MJP: 2015111100 and 2019111024; JMB: 2017111010), Euskadi RIS3 (JMB: 2016222001, 2017222014, 2018222029, 2019222054, 2020333010) Department of Industry of the Basque Country (JMB: Elkartek: KK-2020/00008) and AECC Scientific Foundation (JMB). AE-B was funded by the University of the Basque Country (UPV/EHU) (PIF2014/11) and by the short-term training fellowship Andrew K Burroughs (European Association for the Study of the Liver, EASL). IL and AA-L were funded by the Department of Education, Language Policy and Culture of the Basque Government (PRE_2016_1_0152 and PRE_2018_1_0184). OS and SK were funded by the Austrian Science Fund (FWF25801-B22, FWF-P35168 to OS and L-Mac: F 6104-B21 to SK). FO and DAM were funded by a UK Medical Research Council programme Grant MR/R023026/1. DAM was also funded by the CRUK programme grant C18342/A23390, CRUK/AECC/AIRC Accelerator Award A26813 and the MRC MICA programme grant MR/R023026/1. JBA is supported by the Danish Medical Research Council, Danish Cancer Society, Nordisk Foundation, and APM Foundation. CJO’R and PM-G are supported by Marie Sklodowska-Curie Programme and EASL Sheila Sherlock postdoctoral fellowships

    Latin Americans and Caribbeans in Europe. A cross-country analysis

    Get PDF
    With the beginning of the 21st century, there has been an acceleration of migratory flows from Latin America and the Caribbean (LAC) to Europe. As a result, and despite the negative impact of the economic crisis, 4.6 million Latin American and Caribbean immigrants reside in Europe, half of them in Spain. This article analyses the recent evolution of these migratory flows, their territorial distribution, and their demographic profiles according to the 2011 European census data disseminated by a new tool -the Census Hub- implemented by the European Statistical System. The analysis shows the existence of a high LAC immigrant concentration in Spain and in certain European cities, a marked young and feminized demographic profile, a great variety of educational levels and a different insertion in each European labour market, although many LAC immigrants work in low-skill occupations, being overqualified and underemployed in most of the countries
    corecore