218 research outputs found

    The association between MPOWER tobacco control policies and adolescent smoking across 36 countries: An ecological study over time (2006–2014)

    Get PDF
    Objective: To examine associations over time between national tobacco control policies and adolescent smoking prevalence in Europe and Canada. Design: In this ecological study, national tobacco control policies (MPOWER measures, as derived from WHO data) in 36 countries and their changes over time were related to national-level adolescent smoking rates (as derived from the Health Behaviour in School-aged Children study, 2006-2014). MPOWER measures included were: Protecting people from tobacco smoke (P), offering help to quit tobacco use (O), warning about the dangers of tobacco (W), enforcing bans on advertising, promotion and sponsorship (E) and raising taxes on tobacco (R). Results: Across countries, adolescent weekly smoking decreased from 17.7% in 2006 to 11.6% in 2014. It decreased most strongly between 2010 and 2014. Although baseline MPOWER policies were not directly associated with differences in average rates of adolescent smoking between countries, countries with higher baseline smoke-free policies (P) showed faster rates of change in smoking over the time period. Moreover, countries that adopted increasingly strict policies regarding warning labels (W) over time, faced stronger declines over time in adolescent weekly smoking. Conclusion: A decade after the introduction of the WHO MPOWER package, we observed that, in our sample of European countries and Canada, measures targeting social norms around smoking (i.e., smoke-free policies in public places and policies related to warning people about the dangers of tobacco) are most strongly related to declines in adolescent smoking.publishedVersio

    The association between MPOWER tobacco control policies and adolescent smoking across 36 countries : an ecological study over time (2006–2014)

    Get PDF
    Objective To examine associations over time between national tobacco control policies and adolescent smoking prevalence in Europe and Canada. Design In this ecological study, national tobacco control policies (MPOWER measures, as derived from WHO data) in 36 countries and their changes over time were related to national-level adolescent smoking rates (as derived from the Health Behaviour in School-aged Children study, 2006-2014). MPOWER measures included were: Protecting people from tobacco smoke (P), offering help to quit tobacco use (O), warning about the dangers of tobacco (W), enforcing bans on advertising, promotion and sponsorship (E) and raising taxes on tobacco (R). Results Across countries, adolescent weekly smoking decreased from 17.7% in 2006 to 11.6% in 2014. It decreased most strongly between 2010 and 2014. Although baseline MPOWER policies were not directly associated with differences in average rates of adolescent smoking between countries, countries with higher baseline smoke-free policies (P) showed faster rates of change in smoking over the time period. Moreover, countries that adopted increasingly strict policies regarding warning labels (W) over time, faced stronger declines over time in adolescent weekly smoking. Conclusion A decade after the introduction of the WHO MPOWER package, we observed that, in our sample of European countries and Canada, measures targeting social norms around smoking (i.e., smoke-free policies in public places and policies related to warning people about the dangers of tobacco) are most strongly related to declines in adolescent smoking.Publisher PDFPeer reviewe

    Quantifying the Heating Sources for Mid-infrared Dust Emissions in Galaxies: The Case of M 81

    Get PDF
    With the newly available photometric images at 250 and 500 μm from the Herschel Space Observatory, we study quantitative correlations over a sub-kiloparsec scale among three distinct emission components in the interstellar medium of the nearby spiral galaxy M 81 (NGC 3031): (1) I8 or I24, the surface brightness of the mid-infrared emission observed in the Spitzer Space Telescope 8 or 24 μm band, with I8 and I24 being dominated by the emissions from polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs) of dust, respectively; (2) I500, that of the cold dust continuum emission in the Herschel Space Observatory 500 μm band, dominated by the emission from large dust grains heated by evolved stars; and (3) IHα, a nominal surface brightness of the Hα line emission, from gas ionized by newly formed massive stars. The results from our correlation study, free from any assumption on or modeling of dust emissivity law or dust temperatures, present solid evidence for significant heating of PAHs and VSGs by evolved stars. In the case of M 81, about 67% (48%) of the 8 μm (24 μm ) emission derives its heating from evolved stars, with the remainder attributed to radiation heating associated with ionizing stars

    The Herschel Dwarf Galaxy Survey: I. Properties of the low-metallicity ISM from PACS spectroscopy

    Get PDF
    International audienceContext. The far-infrared (FIR) lines are important tracers of the cooling and physical conditions of the interstellar medium (ISM) and are rapidly becoming workhorse diagnostics for galaxies throughout the universe. There are clear indications of a different behavior of these lines at low metallicity that needs to be explored. Aims. Our goal is to explain the main differences and trends observed in the FIR line emission of dwarf galaxies compared to more metal-rich galaxies, and how this translates in ISM properties. Methods. We present Herschel/PACS spectroscopic observations of the [C ii] 157 μm, [O i] 63 and 145 μm, [O iii] 88 μm, [N ii] 122 and 205 μm, and [N iii] 57 μm fine-structure cooling lines in a sample of 48 low-metallicity star-forming galaxies of the guaranteed time key program Dwarf Galaxy Survey. We correlate PACS line ratios and line-to-LTIR ratios with LTIR, LTIR/LB, metallicity, and FIR color, and interpret the observed trends in terms of ISM conditions and phase filling factors with Cloudy radiative transfer models. Results. We find that the FIR lines together account for up to 3 percent of LTIR and that star-forming regions dominate the overall emission in dwarf galaxies. Compared to metal-rich galaxies, the ratios of [O iii]88/[N ii]122 and [N iii]57/[N ii]122 are high, indicative of hard radiation fields. In the photodissociation region (PDR), the [C ii]157/[O i]63 ratio is slightly higher than in metal-rich galaxies, with a small increase with metallicity, and the [O i]145/[O i]63 ratio is generally lower than 0.1, demonstrating that optical depth effects should be small on the scales probed. The [O iii]88/[O i]63 ratio can be used as an indicator of the ionized gas/PDR filling factor, and is found to be ~4 times higher in the dwarfs than in metal-rich galaxies. The high [C ii]/LTIR, [O i]/LTIR, and [O iii]/LTIR ratios, which decrease with increasing LTIR and LTIR/LB, are interpreted as a combination of moderate far-UV fields and a low PDR covering factor. Harboring compact phases of a low filling factor and a large volume filling factor of diffuse gas, the ISM of low-metallicity dwarf galaxies has a more porous structure than that of metal-rich galaxies

    The ALMA REBELS Survey: The First Infrared Luminosity Function Measurement at $\mathbf{z \sim 7}

    Get PDF
    We present the first observational infrared luminosity function (IRLF) measurement in the Epoch of Reionization (EoR) based on a UV-selected galaxy sample with ALMA spectroscopic observations. Our analysis is based on the ALMA large program Reionization Era Bright Emission Line Survey (REBELS), which targets 42 galaxies at z=6.47.7\mathrm{z=6.4-7.7} with [CII] 158\micron line scans. 16 sources exhibit a dust detection, 15 of which are also spectroscopically confirmed through the [CII] line. The IR luminosities of the sample range from logLIR/L=11.4\log L_{IR}/L_\odot=11.4 to 12.2. Using the UVLF as a proxy to derive the effective volume for each of our target sources, we derive IRLF estimates, both for detections and for the full sample including IR luminosity upper limits. The resulting IRLFs are well reproduced by a Schechter function with the characteristic luminosity of logL/L=11.60.1+0.2\log L_{*}/L_\odot=11.6^{+0.2}_{-0.1}. Our observational results are in broad agreement with the average of predicted IRLFs from simulations at z7z\sim7. Conversely, our IRLFs lie significantly below lower redshift estimates, suggesting a rapid evolution from z4z\sim4 to z7z\sim7, into the reionization epoch. The inferred obscured contribution to the cosmic star-formation rate density at z7z\sim7 amounts to log(SFRD/M/yr/Mpc3)=2.660.14+0.17\mathrm{log(SFRD/M_{\odot}/yr/Mpc^{3}) = -2.66^{+0.17}_{-0.14} } which is at least \sim10\% of UV-based estimates. We conclude that the presence of dust is already abundant in the EoR and discuss the possibility of unveiling larger samples of dusty galaxies with future ALMA and JWST observations.Comment: 9 pages, 5 figure

    Spatially resolved physical conditions of molecular gas and potential star formation tracers in M 83, revealed by the Herschel SPIRE FTS

    Get PDF
    International audienceWe investigate the physical properties of the molecular and ionized gas, and their relationship to the star formation and dust properties in M 83, based on submillimeter imaging spectroscopy from within the central 3.5′ (~4 kpc in diameter) around the starburst nucleus. The observations use the Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel Space Observatory. The newly observed spectral lines include [CI] 370 μm, [CI] 609 μm, [NII] 205 μm, and CO transitions from J = 4−3 to J = 13−12. Combined with previously observed J = 1−0 to J = 3−2 transitions, the CO spectral line energy distributions are translated to spatially resolved physical parameters, column density of CO, N(CO), and molecular gas thermal pressure, Pth, with a non-local thermal equilibrium (non-LTE) radiative transfer model, RADEX. Our results show that there is a relationship between the spatially resolved intensities of [NII] 205 μm and the surface density of the star formation rate (SFR), ΣSFR. This relation, when compared to integrated properties of ultra-luminous infrared galaxies (ULIRGs), exhibits a different slope, because the [NII] 205 μm distribution is more extended than the SFR. The spatially resolved [CI] 370 μm, on the other hand, shows a generally linear relationship with ΣSFR and can potentially be a good SFR tracer. Compared with the dust properties derived from broad-band images, we find a positive trend between the emissivity of CO in the J = 1−0 transition with the average intensity of interstellar radiation field (ISRF), ⟨ U ⟩. This trend implies a decrease in the CO-to-H2 conversion factor, XCO, when ⟨ U ⟩ increases. We estimate the gas-to-dust mass ratios to be 77 ± 33 within the central 2 kpc and 93 ± 19 within the central 4 kpc of M 83, which implies a Galactic dust-to-metal mass ratio within the observed region of M 83. The estimated gas-depletion time for the M 83 nucleus is 1.13 ± 0.6 Gyr, which is shorter than the values for nearby spiral galaxies found in the literature (~2.35 Gyr), most likely due to the young nuclear starbursts. A linear relationship between Pth and the radiation pressure generated by ⟨ U ⟩, Prad, is found to be Pth ≈ 30 Prad, which signals that the ISRF alone is insufficient to sustain the observed CO transitions. The spatial distribution of Pth reveals a pressure gradient, which coincides with the observed propagationof starburst activities and the alignment of (possibly background) radio sources. We discover that the off-centered (from the optical nucleus) peak of the molecular gas volume density coincides well with a minimum in the relative aromatic feature strength, indicating a possible destruction of their carriers. We conclude that the observed CO transitions are most likely associated with mechanical heating processes that are directly or indirectly related to very recent nuclear starbursts

    Normal, dust-obscured galaxies in the epoch of reionization

    Get PDF
    Two serendipitously detected dust-obscured galaxies are reported at z = 6.7 and 7.4, with estimates that such galaxies provide an additional 10-25% contribution to the total star formation rate density at z > 6.Over the past decades, rest-frame ultraviolet (UV) observations have provided large samples of UV luminous galaxies at redshift (z) greater than 6 (refs. (1-3)), during the so-called epoch of reionization. While a few of these UV-identified galaxies revealed substantial dust reservoirs(4-7), very heavily dust-obscured sources at these early times have remained elusive. They are limited to a rare population of extreme starburst galaxies(8-12) and companions of rare quasars(13,14). These studies conclude that the contribution of dust-obscured galaxies to the cosmic star formation rate density at z > 6 is sub-dominant. Recent ALMA and Spitzer observations have identified a more abundant, less extreme population of obscured galaxies at z = 3-6 (refs. (15,16)). However, this population has not been confirmed in the reionization epoch so far. Here, we report the discovery of two dust-obscured star-forming galaxies at z = 6.6813 +/- 0.0005 and z = 7.3521 +/- 0.0005. These objects are not detected in existing rest-frame UV data and were discovered only through their far-infrared [C ii] lines and dust continuum emission as companions to typical UV-luminous galaxies at the same redshift. The two galaxies exhibit lower infrared luminosities and star-formation rates than extreme starbursts, in line with typical star-forming galaxies at z approximate to 7. This population of heavily dust-obscured galaxies appears to contribute 10-25% to the z > 6 cosmic star formation rate density

    The ALMA REBELS survey: the dust content of z ∼7 Lyman break galaxies

    Get PDF
    We include a fully coupled treatment of metal and dust enrichment into the Delphi semi-analytic model of galaxy formation to explain the dust content of 13 Lyman break galaxies (LBGs) detected by the Atacama Large millimetre Array (ALMA) REBELS Large Program at z ≃ 7. We find that the galaxy dust mass, Md, is regulated by the combination of Type II supernova dust production, astration, shock destruction, and ejection in outflows; grain growth (with a standard time-scale τ0 = 30 Myr) plays a negligible role. The model predicts a dust-to-stellar mass ratio of ~ 0.07-0.1per cent and a UV-to-total star formation rate relation such that log(ψUV) = -0.05 [log(ψ)]2 + 0.86 log(ψ) - 0.05 (implying that 55-80 per cent of the star formation is obscured) for REBELS galaxies with stellar mass M∗ = 109-1010 M⊙. This relation reconciles the intrinsic UV luminosity of LBGs with their observed luminosity function at z = 7. However, 2 out of the 13 systems show dust-to-stellar mass ratios (~0.94-1.1per cent) that are up to 18 times larger than expected from the fiducial relation. Due to the physical coupling between dust and metal enrichment, even decreasing τ0 to very low values (0.3 Myr) only increases the dust-to-stellar mass ratio by a factor of ∼2. Given that grain growth is not a viable explanation for such high observed ratios of the dust-to-stellar mass, we propose alternative solutions
    corecore