24 research outputs found
Drivers of biogenic volatile organic compound emissions in hygrophytic bryophytes
Altres ajuts: we acknowledge the Institució Catalana d'Història Natural (ICHN) and the Secció de Ciències Biològiques de l'Institut d'Estudis Catalans (IEC) for additional funding for studying Mediterranean springs. AMYS acknowledges her Juan de la Cierva grant and her La Caixa Foundation Junior Leader retaining fellowship.Bryophytes can both emit and take up biogenic volatile organic compounds (BVOCs) to and from the environment. Despite the scarce study of these exchanges, BVOCs have been shown to be important for a wide range of ecological roles. Bryophytes are the most ancient clade of land plants and preserve very similar traits to those first land colonisers. Therefore, the study of these plants can help understand the early processes of BVOC emissions as an adaptation to terrestrial life. Here, we determine the emission rates of BVOCs from different bryophyte species to understand what drives such emissions. We studied 26 bryophyte species from temperate regions that can be found in mountain springs located in NE Spain. Bryophyte BVOC emission presented no significant phylogenetic signal for any of the compounds analysed. Hence, we used mixed linear models to investigate the species-specific differences and eco-physiological and environmental drivers of bryophyte BVOC emission. In general, species-specific variability was the main factor explaining bryophyte BVOC emissions; but additionally, photosynthetic rates and light intensity increased BVOC emissions. Despite emission measurements reported here were conducted at 30°, and may not directly correspond to emission rates in natural conditions, most of the screened species have never been measured before for BVOC emissions and therefore this information can help understand the drivers of the emissions of BVOCs in bryophytes
Recommended from our members
The Latin America Early Career Earth System Scientist Network (LAECESS): addressing present and future challenges of the upcoming generations of scientists in the region
Early career (EC) Earth system scientists in the Latin America and the Caribbean region (LAC) have been facing several issues, such as limited funding opportunities, substandard scientific facilities, lack of security of tenure, and unrepresented groups equality issues. On top of this, the worsening regional environmental and climatic crises call for the need for this new generation of scientists to help to tackle these crises by increasing public awareness and research. Realizing the need to converge and step up in making a collective action to be a part of the solution, the Latin America Early Career Earth System Scientist Network (LAECESS) was created in 2016. LAECESS’s primary goals are to promote regional networking, foster integrated and interdisciplinary science, organize soft skills courses and workshops, and empower Latin American EC researchers. This article is an initial step towards letting the global science community grasp the current situation and hear the early career LAC science community’s perspectives. The paper also presents a series of future steps needed for better scientific and social development in the LAC region
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis
Ana Maria Yáñez-Serrano fa constar el CREAF com a adreça de correspondènciaThe increasing occurrence of heatwaves has intensified temperature stress on terrestrial vegetation. Here, we investigate how two contrasting isoprene-emitting tropical species, Ficus benjamina and Pachira aquatica, cope with heat stress and assess the role of internal plant carbon sources for isoprene biosynthesis in relation to thermotolerance. To our knowledge, this is the first study to report isoprene emissions from P. aquatica. We exposed plants to two levels of heat stress and determined the temperature response curves for isoprene and photosynthesis. To assess the use of internal C sources in isoprene biosynthesis, plants were fed with C position-labelled pyruvate. F. benjamina was more heat tolerant with higher constitutive isoprene emissions and stronger acclimation to higher temperatures than P. aquatica, which showed higher induced isoprene emissions at elevated temperatures. Under heat stress, both isoprene emissions and the proportion of cytosolic pyruvate allocated into isoprene synthesis increased. This represents a mechanism that P. aquatica, and to a lesser extent F. benjamina, has adopted as an immediate response to sudden increase in heat stress. However, in the long run under prolonged heat, the species with constitutive emissions (F. benjamina) was better adapted, indicating that plants that invest more carbon into protective emissions of biogenic volatile organic compounds tend to suffer less from heat stress
Heat Waves Change Plant Carbon Allocation Among Primary and Secondary Metabolism Altering CO Assimilation, Respiration, and VOC Emissions
Processes controlling plant carbon allocation among primary and secondary metabolism, i.e., carbon assimilation, respiration, and VOC synthesis are still poorly constrained, particularly regarding their response to stress. To investigate these processes, we simulated a 10-day 38°C heat wave, analysing real-time carbon allocation into primary and secondary metabolism in the Mediterranean shrub Halimium halimifolium L. We traced position-specific 13 C-labeled pyruvate into daytime VOC and CO emissions and during light-dark transition. Net CO assimilation strongly declined under heat, due to three-fold higher respiration rates. Interestingly, day respiration also increased two-fold. Decarboxylation of the C1-atom of pyruvate was the main process driving daytime CO release, whereas the C2-moiety was not decarboxylated in the TCA cycle. Heat induced high emissions of methanol, methyl acetate, acetaldehyde as well as mono- and sesquiterpenes, particularly during the first two days. After 10-days of heat a substantial proportion of 13 C-labeled pyruvate was allocated into de novo synthesis of VOCs. Thus, during extreme heat waves high respiratory losses and reduced assimilation can shift plants into a negative carbon balance. Still, plants enhanced their investment into de novo VOC synthesis despite associated metabolic CO losses. We conclude that heat stress re-directed the proportional flux of key metabolites into pathways of VOC biosynthesis most likely at the expense of reactions of plant primary metabolism, which might highlight their importance for stress protection
Innovación pedagógica interdisciplinar y agrupamiento flexible
Esta experiencia, realizada en un colegio de un barrio problemático de Leganés, consiste en organizar grupos de alumnos de 6õ y 7õ de EGB según el nivel y las características de cada uno, y trabajar todas las áreas de forma interdisciplinar. Entre los objetivos destacan: potenciación del trabajo en equipo, integración social y escolar de los alumnos y educación en valores de respeto y responsabilidad. Durante el curso se trabajan tres centros de interés: el Periodismo, la Comunidad Económica Europea y el estudio de una zona costera española. Se exponen los objetivos y actividades de cada uno de estos temas, y concluye con una evaluación de la experiencia por parte de cada grupo y los instrumentos utilizados..Madrid (Comunidad Autónoma). Consejería de Educación y CulturaMadridMadrid (Comunidad Autónoma). Subdirección General de Formación del Profesorado. CRIF Las Acacias; General Ricardos 179 - 28025 Madrid; Tel. + 34915250893ES
Human breathable air in a Mediterranean forest : characterization of monoterpene concentrations under the canopy
Unidad de excelencia María de Maeztu CEX2019-000940-MMonoterpenes have been identified as potential determinants of the human health effects induced by forest exposure. The present study characterizes the total monoterpene concentrations at nose height in a Mediterranean Holm oak forest located in North-East Iberian Peninsula during the annual emission peak (summer and autumn: June to November) using a Proton Transfer Reaction-Mass Spectrometry (PTR-MS). Results show a strong variability of the total monoterpene concentrations in season and daytime. The concentration peak appears during July and August. These two months displayed two average maxima in their diel cycles: One during early morning (from 6:00 to 8:00, 0.30 ppbv for July and 0.41 ppbv for August) and another one at early afternoon (from 13:00 to 15:00, 0.27 ppbv during July and 0.32 ppbv during August). Monoterpene concentrations were strongly related with the temperature (exponentially) and solar radiation (rectangular hyperbolic relationship). The concentrations registered here are similar or higher than in previous ex situ studies showcasing the effects of forests on human health. These findings provide relevant data for the scientific and healthcare community by improving the understanding of monoterpene dynamics at nose height and suggesting further research on the effects of forests on human health, particularly in the Mediterranean regio
Advancing Cross-Disciplinary Understanding of Land-Atmosphere Interactions
The evolution of disciplinary silos and increasingly narrow disciplinary boundaries have together resulted in one-sided approaches to the study of land-atmosphere interactions—a field that requires a bi-directional approach to understand the complex feedbacks and interactions that occur. The integration of surface flux and atmospheric boundary layer measurements is therefore essential to advancing our understanding. The Land-Atmosphere 2021 workshop (held virtually, June 10-11, 2021) involved almost 300 participants from around the world and promoted cross-discipline collaboration by way of talks from invited speakers, moderated discussions, breakout sessions, and a virtual poster session. The workshop focused on five main theme areas: “big picture” overview, instrumentation and remote sensing, modeling, water, and aerosols and clouds. In talks and breakout groups, there were frequent calls for more AmeriFlux sites to be instrumented for boundary layer height measurements, and for the development of some “super sites” where profiling instruments would be deployed. There was further agreement on the need for the standardization of various datasets. There was also a consensus that funding agencies need to be willing to support the sorts of large projects (including associated instrumentation) which can drive interdisciplinary work. Early-career scientists, in particular, expressed enthusiasm for working across disciplinary boundaries but noted that there need to be more financial support and training opportunities so they would be better prepared for interdisciplinary work. Investment in these career development opportunities would enable today's cohort of early-career scientists to advance the frontiers of interdisciplinary work over the next couple of decades.This workshop was organized in connection with the AmeriFlux Year of Water Fluxes and with support from the AmeriFlux Management Project and the Department of Energy's Office of Science and in collaboration with community representation from the U.S. Department of Energy's ARM User Facility, and ASR and ESS programs. The workshop planning committee thanks the invited speakers and breakout facilitators for their efforts to stimulate discussion, and also thanks members of the FLUXNET Early Career Network and Latin America Early Career Earth System Scientist (LAECESS) Network for organizing the early career social. ADR and EB acknowledge funding received from the AmeriFlux Management Project. ADR acknowledges additional support from the National Science Foundation (EF-1702627). YZ acknowledges support by the DOE's ASR, an Office of Science, Office of Biological, and Environmental Research program. Lawrence Livermore National Laboratory is operated for the DOE by Lawrence Livermore National Security, LLC under contract DE-AC52-07NA27344.Peer reviewe
GLOVOCs - Master compound assignment guide for proton transfer reaction mass spectrometry users
Altres ajuts: AMYS acknowledges the Spanish Ministry of Education and Science for her Juan de la Cierva-Incorporación grant. CW acknowledges the ERC consolidator grant VOCO2 (647008)The richness of measurements obtained by Proton-Transfer Reactions Mass Spectrometry (PTR-MS) has opened a new paradigm for the quantification of volatile organic compounds (VOCs). A wide range of compounds can be monitored, however, each detected signal is subject to a compound assignment instead of actual identification because PTR techniques are mass-selective and isomers cannot be separately measured. Thus, rapid development in the field requests continued community efforts to identify compounds. In this study we have reviewed the available literature and created a master compound assignment guide called GLOVOCS that can be referred to by PTR-MS practitioners. GLOVOCS is aimed to help in advancing science of VOCs by facilitating the research of multiple groups using PTR-MS to monitor VOCs and to disentangle the physical, chemical and biological mechanisms underlying their production, emission and impact on environment and organisms from bacteria to humans. The guide is freely accessible at http://glovocs.creaf.cat as a collaborative tool, where users can both consult and contribute to the identification of VOCs by providing possible candidates for all chemical formulas from 18 to 330 atomic mass units. When available, we indicate if there is evidence for biogenic or anthropogenic VOC origin, as well as grouping the compounds based on the Classyfire chemotaxonomic classification (Djoumbou Feunang et al., 2016). While GLOVOCS aims to facilitate the first assessment and consistent classification of compounds, we highly recommend further cross-validation for verifying compounds when using PTR-MS techniques
GLOVOCs - Master compound assignment guide for proton transfer reaction mass spectrometry users
Altres ajuts: AMYS acknowledges the Spanish Ministry of Education and Science for her Juan de la Cierva-Incorporación grant. CW acknowledges the ERC consolidator grant VOCO2 (647008)The richness of measurements obtained by Proton-Transfer Reactions Mass Spectrometry (PTR-MS) has opened a new paradigm for the quantification of volatile organic compounds (VOCs). A wide range of compounds can be monitored, however, each detected signal is subject to a compound assignment instead of actual identification because PTR techniques are mass-selective and isomers cannot be separately measured. Thus, rapid development in the field requests continued community efforts to identify compounds. In this study we have reviewed the available literature and created a master compound assignment guide called GLOVOCS that can be referred to by PTR-MS practitioners. GLOVOCS is aimed to help in advancing science of VOCs by facilitating the research of multiple groups using PTR-MS to monitor VOCs and to disentangle the physical, chemical and biological mechanisms underlying their production, emission and impact on environment and organisms from bacteria to humans. The guide is freely accessible at http://glovocs.creaf.cat as a collaborative tool, where users can both consult and contribute to the identification of VOCs by providing possible candidates for all chemical formulas from 18 to 330 atomic mass units. When available, we indicate if there is evidence for biogenic or anthropogenic VOC origin, as well as grouping the compounds based on the Classyfire chemotaxonomic classification (Djoumbou Feunang et al., 2016). While GLOVOCS aims to facilitate the first assessment and consistent classification of compounds, we highly recommend further cross-validation for verifying compounds when using PTR-MS techniques