84 research outputs found

    A longitudinal resource for population neuroscience of school-age children and adolescents in China

    Get PDF
    During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013–2022), the first ten-year stage of the lifespan CCNP (2013–2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0–17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the “Chinese Data-sharing Warehouse for In-vivo Imaging Brain” in the Chinese Color Nest Project (CCNP) – Lifespan Brain-Mind Development Data Community (https://ccnp.scidb.cn) at the Science Data Bank

    Triterpenoids

    Full text link

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Design, synthesis, bioactivity and mechanism of action of novel myricetin derivatives containing amide and hydrazide

    No full text
    A series of myricetin derivatives containing amide and hydrazide were designed and synthesized. All the compounds were characterized by NMR and HRMS. Bioactivity test showed that some of the target compounds had excellent anti-tobacco mosaic virus (TMV) activity. In particular, the median effective concentration (EC50) values of the anti-TMV curative and protective activities of N-(2-(2-(2-((5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-chromen-3-yl)oxy)acetyl)hydrazineyl)-2-oxoethyl)-4-(trifluoromethyl)benzamide (G9) were 202.3 and 164.0 μg/mL respectively, superior to ningnanmycin (329.1, 230.3 μg/mL). Microscale thermophoresis (MST) and molecular docking showed that G9 had an excellent binding affinity with tobacco mosaic virus coat protein (TMV-CP) (Kd = 0.158 ± 0.024 μM), which was better than that of ningnanmycin (Kd = 2.074 ± 0.818 μM). Moreover, there were many interaction forces between G9 and the key amino acid residues of TMV-CP. The chlorophyll content and peroxidase (POD) activity of tobacco leaves treated with G9 increased significantly, indicating that G9 could improve the photosynthesis of tobacco leaves and stimulate the resistance of tobacco leaves to TMV. The insecticidal activity of G9 against Mythimna separata (M. separate) was found to be 95.2% at 200 μg/mL, which was close to bufenozide (100%). The insecticidal activity of myricetin was significantly improved after the introduction of active groups of amide and hydrazide, which could be further explored

    Molecular dynamics revealed the effect of epoxy group on triglyceride digestion

    No full text
    The digestion behavior of epoxy triglyceride, the main cytotoxic product of deep-frying oil, remains unknown, which may affect its biosafety. In this study, epoxy triglyceride (EGT) and triglyceride (GT) were used to reveal the effect of epoxy group on digestion. Digestibility rate analysis showed that the free fatty acids release rate of EGT was slower. To clarify this phenomenon, binding ability with salt ions in digestive juice and particle size were also been studied. Cluster size analysis indicated that epoxy group increased triglyceride particle size, resulting in smaller contact area between EGT and lipase. Interface behaviors displayed EGT decreased binding ability with salt ions in digestive juice. Spectroscopic analysis showed EGT caused the red shift of lipase peak, indicating that epoxy group changed lipase structure. Molecular dynamics simulation suggested EGT leads to loosen lipase structure. In conclusion, this study highlights that epoxy group could weaken the triglyceride digestion

    Effects of microgels fabricated by microfluidic on the stability, antioxidant, and immunoenhancing activities of aquatic protein

    No full text
    Aquatic products are considered a potential source of novel bioactive proteins, which are used as therapeutic drugs for the treatment of different diseases (such as oxidative stress, immunocompromised, and inflammation), as well as nutraceuticals and cosmetics. However, the physical and chemical properties of proteins are unstable, and they are easily denatured by the influence of external high temperature and polar pH during processing, resulting in the loss of their functional activity. Herein, Fenneropenaeus chinensis water-soluble protein (FCWP) and Lateolabrax japonicus water-soluble protein (LJWP) were encapsulated within spherical biopolymer microgels composed of pectin and chitosan produced by the microfluidic device. The encapsulated samples remained inside the microgels when they were exposed to upper gastrointestinal but were released when they were exposed to simulated colonic fluid due to the hydrolysis effect by enzymes secreted by the colonic microflora. The results showed that microgels improve the thermal stability of FCWP and LJWP due to the interaction between polysaccharides and proteins in the microgels. In addition, microgels encapsulation did not affect the antioxidant and immunoenhancing activities of FCWP and LJWP. In summary, these microgels are suitable for oral colon-specific delivery in functional foods and supplements

    Dual-Enzyme Characteristics of Polyvinylpyrrolidone-Capped Iridium Nanoparticles and Their Cellular Protective Effect against H<sub>2</sub>O<sub>2</sub>‑Induced Oxidative Damage

    No full text
    Polyvinylpyrrolidone-stabilized iridium nanoparticles (PVP-IrNPs), synthesized by the facile alcoholic reduction method using abundantly available PVP as protecting agents, were first reported as enzyme mimics showing intrinsic catalase- and peroxidase-like activities. The preparation procedure was much easier and more importantly, kinetic studies found that the catalytic activity of PVP-IrNPs was comparable to previously reported platinum nanoparticles. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) characterization indicated that PVP-IrNPs had the average size of approximately 1.5 nm and mainly consisted of Ir(0) chemical state. The mechanism of PVP-IrNPs′ dual-enzyme activities was investigated using XPS, Electron spin resonance (ESR) and cytochrome C-based electron transfer methods. The catalase-like activity was related to the formation of oxidized species Ir(0)@IrO<sub>2</sub> upon reaction with H<sub>2</sub>O<sub>2</sub>. The peroxidase-like activity originated from their ability acting as electron transfer mediators during the catalysis cycle, without the production of hydroxyl radicals. Interestingly, the protective effect of PVP-IrNPs against H<sub>2</sub>O<sub>2</sub>-induced cellular oxidative damage was investigated in an A549 lung cancer cell model and PVP-IrNPs displayed excellent biocompatibility and antioxidant activity. Upon pretreatment of cells with PVP-IrNPs, the intracellular reactive oxygen species (ROS) level in response to H<sub>2</sub>O<sub>2</sub> was decreased and the cell viability increased. This work will facilitate studies on the mechanism and biomedical application of nanomaterials-based enzyme mimic

    Mechanism, Clinical Significance, and Treatment Strategy of Warburg Effect in Hepatocellular Carcinoma

    No full text
    Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and the third leading cause of cancer death worldwide. The incidence of HCC accounts for more than 90% of primary HCC. Like most solid malignancies, the occurrence and development of HCC are closely related to the Warburg effect. The Warburg effect of HCC is mainly manifested as increased glucose uptake by HCC cells, increased glycolysis, restricted mitochondrial oxidative phosphorylation, increased pentose phosphate pathway in HCC cells, and increased glutamine decomposition. As the contribution of glycolysis to the total ATP of tumor cells generally does not exceed 50% to 60%, oxidative phosphorylation (OXPHOS) still makes a considerable contribution to the ATP of tumor cells. In some cases, there will be an anti-Warburg effect. HCC Warburg effect is closely related to HCC cell proliferation, apoptosis, immune escape, migration and invasion, chemotherapy resistance, and treatment failure. The mechanism of the Warburg effect in HCC is complex, involving the expression of stimulating the key glycolysis enzymes by hypoxia-inducible factor-1(HIF-1), the activation of oncogenes and the inactivation of tumor suppressor genes, the continuous activation of related signaling pathways, the participation of noncoding RNA, and the rate of metabolism gene mutation of enzyme. This article synthetically discusses the characteristics of glucose metabolism in HCC cells, the mechanism of Warburg effect, clinical significance, and corresponding treatment strategies and provides new perspectives for the prevention and treatment of HCC

    Genetic variants of GRK4 influence circadian rhythm of blood pressure and response to candesartan in hypertensive patients

    No full text
    Background: Genetic variants of coding genes related to blood pressure regulation participate in the pathogenesis of hypertension and determines the response to specific antihypertensive drugs. G protein-coupled receptor kinase 4 (GRK4) and its variants are of great importance in pathogenesis of hypertension. However, little is known about role of GRK4 variants in determine circadian rhythm of blood pressure and response to candesartan in hypertension. The aim of this study was to analyze the correlation of GRK4 variants and circadian rhythm of blood pressure, and to explore their effect on antihypertensive efficiency of candestartan. Methods: In this study, a total of 1239 cases were eligible, completed ambulatory blood pressure monitoring (ABPm) observation and exon sequencing of G protein-coupled receptor kinase 4 (GRK4). ABPm was obtained before and after 4-week treatment of candesartan. Diurnal variation of systolic blood pressure and antihypertensive effect of candesartan were then assessed. Results: Compared to GRK4 wild type (GRK4-WT), patients with GRK4 variants were more likely to be non-dippers (odds ratio (OR) 6.672, 95% confidence interval (CI) 5.124–8.688, P < .001), with GRK4 A142V (OR 5.888, 95% CI 4.332–8.003, P < .001), A486V (OR 7.102, 95% CI 5.334–9.455, P < .001) and GRK4 R65L (OR 3.273, 95% CI 2.271–4.718, P < .001), respectively. Correlation analysis revealed that non-dippers rhythm of blood pressure were associated with GRK4 variants (r = .420, P < .001), with GRK4 A142V (r = .416, P < .001), A486V (r = .465, P < .001) and GRK4 R65L (r = .266, P < .001), respectively. When given 4-week candesartan, patients with GRK4 variants showed better antihypertensive effect as to drop in blood pressure (24 h mSBP, 21.21 ± 4.99 vs 12.34 ± 4.78 mmHg, P < .001) and morning peak (MP-SBP, 16.54 ± 4.37 vs 11.52 ± 4.14 mmHg, P < .001), as well as greater increase in trough to peak ratio (SBP-T/P, .71 ± .07 vs .58 ± .07, P < .001) and smoothness index (SBP-SI, 1.44 ± .16 vs 1.17 ± .11, P < .001) than those with GRK4 WT. Conclusion: This study indicates that hypertensive patients with GRK4 variants are more likely to be non-dippers. What’s more, patients with GRK4 variants possess a significantly better antihypertensive response to candesartan than those with GRK4 WT
    corecore