14 research outputs found

    Modeling \u3cem\u3ep\u3c/em\u3eCO\u3csub\u3e2\u3c/sub\u3e Variability in the Gulf of Mexico

    Get PDF
    A three-dimensional coupled physical–biogeochemical model was used to simulate and examine temporal and spatial variability of sea surface pCO2 in the Gulf of Mexico (GoM). The model was driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A 7-year model hindcast (2004–2010) was performed and validated against ship measurements. Model results revealed clear seasonality in surface pCO2 and were used to estimate carbon budgets in the Gulf. Based on the average of model simulations, the GoM was a net CO2 sink with a flux of 1.11 ± 0.84  ×  1012 mol C yr−1, which, together with the enormous fluvial inorganic carbon input, was comparable to the inorganic carbon export through the Loop Current. Two model sensitivity experiments were performed: one without biological sources and sinks and the other using river input from the 1904–1910 period as simulated by the Dynamic Land Ecosystem Model (DLEM). It was found that biological uptake was the primary driver making GoM an overall CO2 sink and that the carbon flux in the northern GoM was very susceptible to changes in river forcing. Large uncertainties in model simulations warrant further process-based investigations

    Ocean Circulation Causes Strong Variability in the Mid-Atlantic Bight Nitrogen Budget

    Get PDF
    Understanding of nitrogen cycling on continental shelves, a critical component of global nutrient cycling, is hampered by limited observations compared to the strong variability on a wide range of time and space scales. Numerical models have the potential to partially alleviate this issue by filling spatiotemporal data gaps and hence resolving annual area-integrated nutrient fluxes. In this study, a three-dimensional biogeochemical-circulation model was implemented to simulate the Mid-Atlantic Bight (MAB) nitrogen budget. Model results demonstrate that, on average, MAB net community production (NCP) was positive (+0.27 Tg N/year), indicating net autotrophy. Interannual variability in NCP was strong, with annual values ranging between 0.19 and 0.41 Tg N/year. Along-shelf and across-shelf horizontal transport fluxes were the other dominant terms in the nitrogen budget and were primarily responsible for this NCP variability. The along-shelf current transported nitrogen from the north (0.65 Tg N/year) into the MAB, supplementing the nitrogen entering from terrestrial inputs (0.27 Tg N/year). However, NCP was highest in the year when total water volume transport and inorganic nitrogen input was strongest across the continental slope in the southern MAB, rather than when terrestrial inputs were greatest. Interannual variability of NCP appears to be linked to changes in the positions of the Gulf Stream and Slope Water Gyre. Overall, the strong spatiotemporal variability of the nitrogen fluxes highlights the importance of observations throughout all seasons and multiple years in order to accurately resolve the current status and future changes of the MAB nitrogen budget

    Climate Extremes Dominating Seasonal and Interannual Variations in Carbon Export from the Mississippi River Basinariations in Carbon Export from the Mississippi River Basin

    Get PDF
    Knowledge about the annual and seasonal patterns of organic and inorganic carbon (C) exports from the major rivers of the world to the coastal ocean is essential for our understanding and potential management of the global C budget so as to limit anthropogenic modification of global climate. Unfortunately our predictive understanding of what controls the timing, magnitude, and quality of C export is still rudimentary. Here we use a process-based coupled hydrologic/ecosystem biogeochemistry model (the Dynamic Land Ecosystem Model) to examine how climate variability and extreme events, changing land use, and atmospheric chemistry have affected the annual and seasonal patterns of C exports from the Mississippi River basin to the Gulf of Mexico. Our process-based simulations estimate that the average annual exports of dissolved organic C (DOC), particulate organic C (POC), and dissolved inorganic C (DIC) in the 2000s were 2.6 ± 0.4 Tg C yr−1, 3.4 ± 0.3 Tg C yr−1, and 18.8 ± 3.4 Tg C yr−1, respectively. Although land use change was the most important agent of change in C export over the past century, climate variability and extreme events (such as flooding and drought) were primarily responsible for seasonal and interannual variations in C export from the basin. The maximum seasonal export of DIC occurred in summer while for DOC and POC the maximum occurred in winter. Relative to the 10 year average (2001–2010), our modeling analysis indicates that the years of maximal and minimal C export cooccurred with wet and dry years (2008: 32% above average and 2006: 32% below average). Given Intergovernmental Panel on Climate Change-predicted changes in climate variability and the severity of rain events and droughts of wet and dry years for the remainder of the 21st century, our modeling results suggest major changes in the riverine link between the terrestrial and oceanic realms, which are likely to have a major impact on C delivery to the coastal ocean

    International Treaties in the Chinese Domestic Legal System

    No full text

    Modeling pCO(2) variability in the Gulf of Mexico

    No full text
    Publisher's PDFA three-dimensional coupled physicalbiogeochemical model was used to simulate and examine temporal and spatial variability of sea surface pCO(2) in the Gulf of Mexico (GoM). The model was driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A 7-year model hindcast (2004-2010) was performed and validated against ship measurements. Model results revealed clear seasonality in surface pCO(2) and were used to estimate carbon budgets in the Gulf. Based on the average of model simulations, the GoM was a net CO2 sink with a flux of 1.11 +/- 0.84 x 10(12) mol C yr(-1), which, together with the enormous fluvial inorganic carbon input, was comparable to the inorganic carbon export through the Loop Current. Two model sensitivity experiments were performed: one without biological sources and sinks and the other using river input from the 1904-1910 period as simulated by the Dynamic Land Ecosystem Model (DLEM). It was found that biological uptake was the primary driver making GoM an overall CO2 sink and that the carbon flux in the northern GoM was very susceptible to changes in river forcing. Large uncertainties in model simulations warrant further process-based investigations.University of Delaware, School of Marine Science and Polic

    Satellite Estimation of Coastal \u3ci\u3ep\u3c/i\u3eCO\u3csub\u3e2\u3c/sub\u3e and Air-Sea Flux of Carbon Dioxide in the Northern Gulf of Mexico

    No full text
    Satellite approaches for estimation of the partial pressure of CO2 (pCO2) and air-sea flux of CO2 in coastal regions offer the potential to reduce uncertainties in coastal carbon budgets and improve understanding of spatial and temporal patterns and the factors influencing them. We used satellite-derived products in combination with an extensive data set of ship-based observations to develop an unprecedented multi-year time-series of pCO2 and air-sea flux of CO2 in the northern Gulf of Mexico for the period 2006–2010. A regression tree algorithm was used to relate satellite-derived products for chlorophyll, sea surface temperature, and dissolved and detrital organic matter to ship observations of pCO2. The resulting relationship had an r2 of 0.827 and a prediction error of 31.7 μatm pCO2 (root mean-squared error of the relationship was 28.8 μatm). Using a wind speed and gas exchange relationship along with satellite winds, estimates of air-sea flux of CO2 were derived yielding an average annual flux over the period 2006–2010 of − 0.8 to − 1.5 (annual mean = − 1.1 ± 0.3) mol C m−2 y−1, where the negative value indicates net ocean uptake. The estimated total annual CO2 flux for the study region was − 4.3 + 1.1 Tg C y−1. Relationships of satellite-derived pCO2 with salinity were consistent with shipboard observations and exhibited a concave relationship with low values at mid- and low salinities attributed to strong biological drawdown of CO2 in the high productivity river-mixing zone. The time-series of satellite-derived pCO2 was characterized by a seasonal pattern with values lower during winter and spring, low to intermediate values during fall, and higher and more variable values during summer. These findings were similar to simulations from a coupled physical-biogeochemical model. A seasonal pattern was also evident in the air-sea flux of CO2 with generally more negative fluxes (i.e., ocean uptake) during winter and spring, and positive fluxes during summer months with fall being a period of transition. Interannual variations in annual means of both air-sea flux of CO2 and DIN loading were significant, with higher DIN loading coinciding in some cases with more negative air-sea flux of CO2 (i.e., net ocean uptake). Spatial patterns of pCO2 reflected regional environmental forcing including effects of river discharge, wind forcing, and shelf-slope circulation. Our study also illustrates the utility of satellite extrapolation for highlighting areas that may contribute significantly to regional signals and for guiding prioritization of locations for acquiring further observations. The approach should be readily applicable to other regions given adequate availability of in situ observations for algorithm development

    Ocean Circulation Causes Strong Variability in the Mid-Atlantic Bight Nitrogen Budget

    Get PDF
    Understanding of nitrogen cycling on continental shelves, a critical component of global nutrient cycling, is hampered by limited observations compared to the strong variability on a wide range of time and space scales. Numerical models have the potential to partially alleviate this issue by filling spatio-temporal data gaps and hence resolving annual area-integrated nutrient fluxes. In this study, a three-dimensional bio geo chemical-circulation model was implemented to simulate the Mid-Atlantic Bight (MAB) nitrogen budget. Model results demonstrate that, on average, MAB net community production (NCP) was positive (plus 0.27 teragrams (Tg) Nitrogen per year), indicating net autotrophy. Inter-annual variability in NCP was strong, with annual values ranging between 0.19 and 0.41 Tg N/year. Along-shelf and across-shelf horizontal transport fluxes were the other dominant terms in the nitrogen budget and were primarily responsible for this NCP variability. The along-shelf current transported nitrogen from the north (0.65 Tg N/year) into the MAB, supplementing the nitrogen entering from terrestrial inputs (0.27 Tg N/year). However, NCP was highest in the year when total water volume transport and inorganic nitrogen input was strongest across the continental slope in the southern MAB, rather than when terrestrial inputs were greatest. Inter-annual variability of NCP appears to be linked to changes in the positions of the Gulf Stream and Slope Water Gyre. Overall, the strong spatio temporal variability of the nitrogen fluxes highlights the importance of observations throughout all seasons and multiple years in order to accurately resolve the current status and future changes of the MAB nitrogen budget
    corecore