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Abstract

Phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulat-

ing photosynthesis and other ecosystem processes, as well as competitive interactions and feedbacks to the climate

system. We conducted an analysis to evaluate the representation of phenology, and the associated seasonality of eco-

system-scale CO2 exchange, in 14 models participating in the North American Carbon Program Site Synthesis. Model

predictions were evaluated using long-term measurements (emphasizing the period 2000–2006) from 10 forested sites

within the AmeriFlux and Fluxnet-Canada networks. In deciduous forests, almost all models consistently predicted

that the growing season started earlier, and ended later, than was actually observed; biases of 2 weeks or more were
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typical. For these sites, most models were also unable to explain more than a small fraction of the observed interannu-

al variability in phenological transition dates. Finally, for deciduous forests, misrepresentation of the seasonal cycle

resulted in over-prediction of gross ecosystem photosynthesis by +160 ± 145 g C m�2 yr�1 during the spring transi-

tion period and +75 ± 130 g C m�2 yr�1 during the autumn transition period (13% and 8% annual productivity,

respectively) compensating for the tendency of most models to under-predict the magnitude of peak summertime

photosynthetic rates. Models did a better job of predicting the seasonality of CO2 exchange for evergreen forests.

These results highlight the need for improved understanding of the environmental controls on vegetation phenology

and incorporation of this knowledge into better phenological models. Existing models are unlikely to predict future

responses of phenology to climate change accurately and therefore will misrepresent the seasonality and interannual

variability of key biosphere–atmosphere feedbacks and interactions in coupled global climate models.

Keywords: autumn senescence, carbon cycle, land surface model (LSM), leaf area index (LAI), model error, North American

Carbon Program (NACP), phenology, seasonal dynamics, spring onset

Received 10 June 2011; revised version received 13 September 2011 and accepted 20 September 2011

Introduction

Phenological transitions drive the seasonal progression

of vegetation through stages of dormancy, active

growth, and senescence. Although phenology has tradi-

tionally been concerned with physical changes in struc-

ture (e.g., leaf development and abscission), the

inherent seasonality of mass and energy exchange

between terrestrial ecosystems and the atmosphere can,

more generally, be viewed as phenological in nature

(Gu et al., 2003). In deciduous forests, the relationships

between the phenology of canopy structure and func-

tion are obvious. In evergreen forests, physiological

changes within existing foliage (and not the production

of new foliage) regulate the annual rhythms of photo-

synthesis and transpiration (e.g., Monson et al., 2005;

Richardson et al., 2009b). In both forest types, pheno-

logical switches, rather than fast responses to high-

frequency variation in environmental drivers, are

controlling the seasonal patterns.

Phenology is thus a key regulator of ecosystem

processes and biosphere feedbacks to the climate sys-

tem (Peñuelas et al., 2009). Phenology influences both

spatial and temporal (at seasonal-to-interannual time

scales) variability in ecosystem productivity (Baldoc-

chi et al., 2001; Churkina et al., 2005; Richardson et al.,

2009a, 2010; Dragoni et al., 2011), and it is of funda-

mental importance for ecosystem carbon cycling, ter-

restrial carbon sequestration, and mitigation of

anthropogenic CO2 emissions. Furthermore, phenol-

ogy affects the following: hydrology (Hogg et al.,

2000), as leaf-out is accompanied by an increase in

evapotranspiration and reduced throughfall; nutrient

cycling processes (Cooke & Weih, 2005), as senescence

results in fresh litter inputs to the soil; and atmo-

spheric and climate system feedbacks (Schwartz, 1992), as

the amount and condition of foliage present affects

albedo, surface energy balance, and surface roughness

(Moore et al., 1996; Sakai et al., 1997; Peñuelas et al.,

2009).

It is, therefore, essential that terrestrial biosphere

models simulating the temporal dynamics of biological

processes on the land surface have an accurate repre-

sentation of phenology. This is true whether the model

is simple or complex (in terms of the number of biogeo-

chemical processes it features, and the degree to which

processes are coupled or interact with each other) and

whether the model is being run for a single site or the

entire globe. Indeed, Levis & Bonan (2004) highlight the

importance of accurate prognostic modeling of phenol-

ogy, and the associated seasonal patterns of canopy leaf

area index (LAI), for climate model runs that couple a

land surface scheme to an atmospheric general circula-

tion model.

A number of previous studies have evaluated the

phenology submodels included in state-of-the-art land

surface schemes and ecosystem models and concluded

that these routines tend to be overly simplistic and

result in biased predictions (Kucharik et al., 2006; Ryu

et al., 2008). Randerson et al. (2009) included phenologi-

cal metrics as part of a systematic framework, the

Carbon-LAndModel intercomparisonProject (C-LAMP),

to assess the biogeochemical component of coupled cli-

mate–carbon models. They concluded that model bias

toward under-predicting temperate and boreal forest

uptake of CO2 could be attributed to a 1–3 month delay

in predicting the timing of maximum LAI in these eco-

systems, compared to estimates derived from MODIS

data. Randerson et al. (2009) also noted that the two

models they evaluated tended to predict a longer grow-

ing season than was actually observed in temperate

ecosystems, with photosynthetic uptake occurring too

early in the spring and too late in the autumn, com-

pared with ground observations. Errors in LAI would

likely propagate to errors in partitioning the available

energy to latent and sensible heat fluxes, and errors in

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 566–584
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the timing of photosynthetic uptake would also affect

the seasonality of modeled atmospheric CO2 concentra-

tions, emphasizing the importance of accurate repre-

sentation of phenologically mediated processes.

In this study, we describe an analysis of the represen-

tation of phenology, in terms of the seasonality of LAI,

gross ecosystem photosynthesis (GEP), and net ecosys-

tem exchange (NEE), in 14 terrestrial biosphere models

that contributed model runs to the North American

Carbon Program (NACP) Site Synthesis. (We do not

intend for this study to be considered a comprehensive

analysis of all aspects of model performance; comple-

mentary NACP efforts include work by Schwalm et al.

(2010) and Dietze et al. (2011), and work in preparation

by K. Schaefer et al., T. Keenan et al., P. Stoy et al., and

B. Raczka et al..) The five deciduous broadleaf forest

(DBF) and five evergreen needleleaf forest (ENF) sites

selected for the analysis are all members of either the

AmeriFlux or Fluxnet-Canada networks. Our analysis

draws on the continuous eddy covariance measure-

ments of forest-atmosphere CO2 fluxes that have been

made at each site for the last decade or more. At the

deciduous forest sites, the flux measurements are com-

plemented by above- and below-canopy measurements

of photosynthetically active radiation, with which the

seasonal trajectory of LAI can be estimated (e.g., Turner

et al., 2003).

The objectives of our analysis are as follows: (1) to

assess the accuracy with which spring and autumn

phenological transitions are predicted by different

models; (2) to evaluate how these patterns vary

between deciduous and evergreen forest types; and (3)

to quantify how much of the total bias in modeling

annual GEP can be attributed to errors in modeling the

spring and autumn phenological transitions.

Data and method

Field measurements

The present analysis uses field measurements and model runs

contributed to the NACP Site Synthesis project (http://nacp.

ornl.gov/mast-dc/int_synthesis.shtml). We restrict our analy-

sis to temperate and boreal deciduous broadleaf and ever-

green needleleaf sites (five DBF and five ENF sites), with

summer active/winter dormant seasonality, selected from the

NACP ‘Priority 1’ list (Table 1).

Eddy covariance measurements of net ecosystem exchange

of CO2 (NEE; lmol CO2 m�2 s�1) supplied by site investiga-

tors were gap filled and partitioned to GEP and ecosystem res-

piration according to Barr et al. (2004). The partitioning

algorithm was compared with a variety of other approaches

by Desai et al. (2008). Most partitioning methods were found

to yield similar seasonal cycles, and estimates of annual GEP

that were within 10% of each other. This gives us confidence T
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in the partitioning at daily-to-annual time scales. Furthermore,

we argue that the narrow moving window used by the Barr

et al. algorithm makes it well suited to the seasonality analyses

we conduct. Filtering of nocturnal NEE measurements during

periods of inadequate turbulence was conducted on a site-by-

site basis using a u* change-point detection algorithm,

described and evaluated by Barr et al. (2009; A. Barr, D.Y.

Hollinger, A.D. Richardson, unpublished results).

For deciduous forests (the necessary data were generally

not available for evergreen conifer sites), the seasonal trajec-

tory of canopy leaf area index (LAI, m2 m�2) was estimated as

follows. First, we calculated the gap fraction, P, as P = Qt/Qo,

where Qo is incident solar photosynthetic photon flux density

(PPFD) measured above the canopy and Qt is the PPFD mea-

sured below the canopy. We used measurements of P when

the solar zenith angle was closest to 57° (one sample in the

morning and one sample in the afternoon) and then calculated

LAI for each sample as LAI = �log(P)/K where K = G(57)/

cos(57). We restricted our analyses to zenith angles nearest 57

degrees because at this point, all leaf inclination distribution

functions (G) converge to 0.5. Then, we obtained daily LAI by

averaging the two LAI values to consider foliar clumping

effects (Ryu et al., 2010). Noise in the resulting time series,

which we attribute mostly to cloud effects (variability in direct

beam and diffuse PPFD), was smoothed with a spline func-

tion. We then re-scaled the seasonal trajectory of LAI so that

the seasonal peak LAI derived in this manner matched with

measured LAI as reported on the AmeriFlux web page

(http://ameriflux.ornl.gov/) or in published manuscripts for

each site (see references in Table 1), and the seasonal

minimum LAI was zero.

With this approach, we obtained essentially continuous esti-

mates of changes in LAI over time for each of the deciduous

forest sites. However, the heterogeneous nature of the below-

canopy light environment raises questions about the degree to

which these estimates may be representative of leaf area

dynamics across the larger tower footprint. At four of the five

deciduous sites, only a single below-canopy quantum sensor

was used to measure Qt. At US-MMS, there were four below-

canopy sensors, which no doubt provided better sampling of

spatial variability in Qt. At none of the sites were field cam-

paigns to measure LAI (e.g., plant canopy analyzer or hemi-

spherical photography) conducted at a sufficiently high

temporal resolution (e.g., weekly) to permit accurate estima-

tion of phenological transition dates. However, where such

data are available at a lower temporal frequency (e.g.,

monthly), they provide a context for evaluating our LAI esti-

mates. As shown in Fig. 1, the mean seasonal course (over

multiple years) of LAI estimated from P = Qt/Qo (solid black

lines) is in good agreement with that obtained by the LAI-2000

(Li-Cor Biosciences, Lincoln, NE, USA) plant canopy analyzer

instrument (open circles) across a network of plots at each site

(no LAI-2000 data for US-WCr). For US-MMS and US-UMB,

the timing of spring and autumn transitions was consistent

between the two methods. For US-Ha1, there is a clear diver-

gence in early autumn, with the LAI-2000 data indicating an

earlier decline in leaf area. However, this could simply be an

artifact of sampling in different years: although Qt data were

available for 9 years and LAI-2000 for 4 years, there was only

1 year of overlap between the two data sets at US-Ha1. For

Ca-Oas, LAI-2000 measurements were made in years with

substantial variability in the timing of canopy develop-

ment, and this variability (as shown in Fig. 1) masks the

otherwise good concordance between LAI measured with

the LAI-2000 and estimated from P = Qt/Qo. Both methods

were in agreement, for example, on the exceptionally early

springs in 1998 and 2001 and the late onset of leaf develop-

ment in 1997 and 2004. The above patterns, and the overall

strong correlation between LAI from the two methods at

each site (r > 0.95 for Ca-Oas, US-MMS, and US-UMB;

r = 0.85 for US-Ha1), give us confidence in our retrievals.

We conclude by noting that although satellite data (e.g.,

vegetation indices as well as more targeted products related to

LAI and phenology) offer the promise of global coverage, they

suffer from tradeoffs between spatial and temporal resolution

and have their own substantial uncertainties (e.g., Zhang et al.,

2006; Garrigues et al., 2008; White et al., 2009), which in the

context of the present analysis make them less suitable bench-

marks for model evaluation.

Model runs

Participation in the NACP site synthesis was on a volunteer

basis, and an open invitation was sent to the terrestrial bio-

sphere modeling community. Modeling teams were free to

choose as simple or as complex a model as they desired. Mod-

els were run on a site-by-site basis, using measured environ-

mental drivers (gap filled as necessary using a standardized

method, D. Ricciuto et al. in preparation), and site-specific ini-

tial conditions (as judged necessary), following a standard

protocol (http://nacp.ornl.gov/mast-dc/docs/Site_Synthe-

sis_Protocol_v7.pdf). The protocol specified spin-up of car-

bon pools to steady state, but the way in which this was

implemented varied among modeling teams.

Of the variety of models for which output was submitted to

the NACP database, we included only those that appeared to

at least superficially capture the seasonal trajectory of ecosys-

tem activity. For example, models that did not predict winter

dormancy (i.e., if they instead predicted significant wintertime

photosynthetic uptake) were not included in this analysis. The

14 models that were included in our analysis are listed in

Table 2. Note that the LoTEC model was run in a data assimi-

lation mode, and model parameters were optimized, on a site-

by-site basis, conditional on the flux measurements. This no

doubt contributes to the better performance of LoTEC

compared with some of the other models in this analysis.

Model approaches to phenological variation

Critical phenological events influencing carbon uptake in

deciduous forests relate to the timing of leaf appearance, leaf

expansion (increase of LAI), and leaf loss. For evergreen for-

ests, a similar classification of foliage activity may be made

from winter dormant to fully active and then dormant again.

The models analyzed here use a variety of methods to deter-
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mine the amount of foliage present and active in a canopy

(Table 2). The simplest approach is to prescribe a fixed sea-

sonal course of LAI. This approach encompasses the onset

and development of foliage and also the dynamics of leaf loss.

The original version of SiB (Sellers et al., 1986) used monthly

LAI values that were specific for each plant functional type. A

slightly more complicated approach to phenology is to pre-

scribe the presence and amount of foliage based on remote

sensing data. SiB2 (Sellers et al., 1996) used AVHRR data to

determine seasonal NDVI and then fPAR and LAI. In the

present analysis, BEPS relies on a global LAI dataset (Deng

et al., 2006) derived from SPOT4 VEGETATION images and

corrected for clumping via multi-angle POLDER observations

(Chen et al., 2005). ED2 is designed to operate with the MODIS

LAI product or other phenological drivers (Medvigy et al.,

2009). Because satellite data are sometimes not available (e.g.,

for prognostic runs), models that use remotely sensed pheno-

logical observations may use multi-year average LAI and

often maintain the flexibility of using other sources. The

results presented here for the SiB class of models (as well as

ISAM), for example, use a single average seasonal course of

LAI determined for each site.

Foliage onset and development in plants have long been

related to temperature thresholds and cumulative heat sums
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Fig. 1 The mean seasonal trajectory of observed and simulated leaf area index (LAI), for five deciduous broadleaf sites. The continuous

observed LAI is derived from gap fraction estimates based on above- and below-canopy measurements of photosynthetically active

radiation. Open circles show periodic LAI measurements made using an LAI-2000 plant canopy analyzer.
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(see, e.g., Shelford, 1930). This kind of approach is used by a

number of the models (Table 2). The Ecosys model requires

soil surfaces temperatures to exceed specified thresholds

depending upon latitude for a certain number of hours. Can-

IBIS operates in a similar fashion based on air temperatures

while for deciduous sites DLEM uses a 7-day moving average

that must exceed a threshold (for evergreen sites, DLEM uses

prescribed phenology). The heat sum or growing degree day

(GDD) approach is used by several models (including Biome-

BGC, ED2, LoTEC, LPJ_wsl, and ORCHIDEE) for deciduous

broadleaf trees but details of the implementations vary

widely. Biome-BGC combines GDDs with a radiation sum

(White et al., 1997). ORCHIDEE requires a chilling sum (Botta

et al., 2000) prior to leaf initiation; other models implicitly

account for chilling by summing degree days after a particular

date such as January 1. LoTEC is distinct from the other mod-

els in that it optimizes parameter values to best fit the

observed data. Included in the LoTEC optimizations are a leaf

initiation GDD threshold and a full canopy GDD sum. These

values are determined individually for each site and across

the data record (the phenological parameters do not vary by

year). Some of the models (Biome-BGC, ORCHIDEE) use a

GDD approach for deciduous trees only; there is no explicit

phenology (removal of dormancy) for evergreens.

A final approach, exhibited by CN-CLASS, is to prognosti-

cally calculate foliage carbon balance. In this method, leaf

onset starts when daily photosynthesis of virtual leaves

exceeds daily respiration for seven consecutive days (Arora &

Boer, 2005). Virtual photosynthesis and respiration are both

functions of temperature, and photosynthesis is also a func-

tion of soil moisture. Once leaf onset occurs, a number of mod-

els (Table 2) calculate LAI based on carbon allocation

principles. These include seasonal allocation rules for different

tissues and net foliage C gain.

Several different schemes are used for determining foliage

inactivation or shedding. These include prescribed LAI (the

SiB class models, BEPS, Can-IBIS, and ISAM), prognostic leaf

longevity that varies according to GDD (LPJ_wsl), and various

low temperature thresholds. Several of the models (Biome-

BGC, CN-CLASS, DLEM) combine daylength and tempera-

ture thresholds based on the results of White et al. (1997). Eco-

sys requires a set number of hours below plant functional

type-specific thresholds and shortening photoperiods to initi-

ate litterfall in deciduous species and foliage inactivation in

evergreens. In some models (e.g., ED2, ORCHIDEE), in addi-

tion to changes in LAI through the season, there are decreases

in photosynthetic capacity driven by leaf aging. Leaf loss in

LoTEC is determined by a low temperature parameter that is

optimized for each site.

Data processing and extraction of phenological transition
dates

For the deciduous sites, we extracted phenological transition

dates from measured and modeled LAI trajectories. In addi-

Table 2 Summary of models used in this analysis and their representation of phenology and seasonality of leaf area index (LAI).

For models with ‘prognostic’ phenology, the seasonality of LAI is predicted based on climatic drivers; for those with ‘prescribed’

phenology, an average seasonal LAI cycle, as derived on a site-by-site basis from satellite (AVHRR) data, was used. Models with

semi-prescribed and semi-prognostic phenology represent a hybrid of these approaches. GDD is growing degree days; T is temper-

ature; C is carbon; PFT is plant functional type

Model name Resolution Leaf onset Control on LAI Leaf loss Source

BEPS Daily Satellite Satellite Satellite Ju et al. (2006)

Biome-BGC Daily GDD and radiation

sum

Dynamic C

allocation

Daylength and low

temperature

Thornton et al. (2002)

Can-IBIS Half-hourly T threshold GDD and dynamic

C

Prescribed El Maayar et al. (2002)

CN-CLASS Half-hourly C balance C balance Daylength and low

temperature

Arain et al. (2006)

DLEM Daily T7-day > threshold GDD to PFT limit Daylength and low

temperature

Tian et al. (2010)

Ecosys Hourly Hours above T

threshold

Dynamic C

allocation

Hours below T

threshold

Grant et al. (2009)

ED2 Half-hourly Semi-prescribed Dynamic C

allocation

GDD and leaf

turnover

Medvigy et al. (2009)

ISAM Half-hourly Prescribed Prescribed Prescribed Jain & Yang (2005)

LoTEC Half-hourly GDD GDD T-dependent turnover Hanson et al. (2004)

LPJ_wsl Daily GDD GDD Leaf longevity

(prescribed)

Sitch et al. (2003)

ORCHIDEE Half-hourly GDD and chilling Dynamic C

allocation

Decreasing T and

T threshold

Krinner et al. (2005)

SiB3 Half-hourly Prescribed Prescribed Prescribed Baker et al. (2008)

SiBCASA 10 min Prescribed Prescribed Prescribed Schaefer et al. (2008)

SSiB2 Half-hourly Prescribed Prescribed Prescribed Zhan et al. (2003)
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tion, for both deciduous and evergreen sites, we included a

series of diagnostic phenological metrics extracted from the

measured and modeled time series of NEE and GEP. Transi-

tion dates and thresholds were estimated from smoothing

splines fit to measured and modeled data at the daily time

step, as illustrated in Richardson et al. (2010). The phenologi-

cal transition dates we estimated from the data were as fol-

lows:

1 The first spring and last autumn dates at which measured

and modeled LAI = 20%, 50%, and 80% of the seasonal LAI

amplitude (deciduous sites only);

2 The first spring and last autumn dates at which estimated

and modeled daily GEP = 20%, 50%, and 80% of the sea-

sonal maximum GEP; and

3 The first spring and last autumn dates of NEE source/sink

transition (restricted to source/sink transitions that began

or concluded periods of 14 continuous days of net CO2

uptake).

The relative thresholds (20%, 50%, and 80%) were selected

to correspond to a range of developmental stages, so as to

evaluate the ability of models to predict not only ‘start’ and

‘end’ of the growing season but also the overall seasonal pat-

tern. We used relative rather than absolute (e.g., LAI = 1.0 m2

m�2 or GEP = 2 g C m�2 day�1) measures to account for dif-

ferences in magnitude of both leaf area and CO2 fluxes across

sites (see also Richardson et al., 2010 for a similar approach;

alternative methods have been proposed elsewhere, e.g., Gu

et al., 2003).

We calculated transition date anomalies on a site-by-site

basis, i.e., as interannual departures from the site mean.

For transition dates, model bias was calculated as the differ-

ence, in days, between the modeled and the observed transi-

tion date. Thus, a negative bias indicates that the model

predicted the transition date too early in the year, whereas a

positive bias indicates the model predicted the transition date

too late in the year.

To evaluate the impact of errors in modeling phenological

transitions on annual ecosystem productivity estimates, we

calculated several metrics, beginning with the total model bias

in annual GEP:

Total model bias ¼ ðannual model GEPÞ
� ðannual tower GEPÞ: ð1Þ

Three main sources of model error (which may reflect some

combination of errors in model structure and errors in model

parameterization) that contribute to the total model bias in

GEP are (1) errors in the overall magnitude of modeled GEP;

(2) errors in the seasonality of modeled GEP; and (3) errors in

the sensitivity of modeled GEP to high-frequency variability

in environmental drivers (e.g., incorrect representation of

GEP sensitivity to vapor pressure deficit, soil water stress, or

air temperature, among other factors). Errors in GEP magni-

tude (1), are likely due to incorrect specification of photosyn-

thetic parameters such as Amax or Vcmax and can occur

independently of errors in (2) or (3). To correct for (1) and

emphasize instead a focus on errors in seasonality, we re-

scaled modeled GEP (daily values) so that the seasonal max-

ima (as determined by the 95th percentile value) of measured

and observed GEP were the same. Thus,

model GEPre�scaled ¼ model GEP� tower GEPmax

model GEPmax
: ð2Þ

We then calculated the total model bias in annual GEP, cor-

rected for differences in GEPmax, as follows:

Total model bias (scaled for GEPmaxÞ
¼ ðannual model GEPre�scaledÞ � ðannual tower GEPÞ: ð3Þ

To quantify how much of the model bias could be attrib-

uted to errors in seasonality, we defined ‘spring’ as the period

between the first date (for each site-year of data, for each

model run) when either model GEP or tower GEP rose to 20%

of GEPmax, and the last date when either model GEP or tower

GEP rose to 80% of GEPmax. ‘Autumn’ was similarly defined

as the period between the first date when either model GEP

or tower GEP dropped below 80% of GEPmax, and the last

date when either model GEP or tower GEP dropped below

20% of GEPmax. Put differently, ‘spring’ and ‘autumn’ model

biases were calculated from model GEPre-scaled and tower

GEP, with GEP integrals calculated for the period during

which either model GEP or tower GEP is in the ‘increasing

GEP’ phase (0.2 � daily GEP/GEPmax � 0.8) in spring or

‘decreasing GEP’ phase in autumn (0.8 � daily GEP/

GEPmax � 0.2). (Thus, the first and last dates of ‘spring’ and

‘autumn’ varied from year-to-year and across sites, but in

each instance, the same dates were used to define the period

of integration for both model GEP and tower GEP. Note also

that the periods of integration could thus vary among

models.)

Results

Leaf area dynamics

The modeled seasonal trajectory of deciduous forest

LAI suffered from errors in the timing of both spring

increases and autumn decreases in LAI, as well as

errors in the amplitude of the seasonal cycle. No single

model characterized LAI dynamics well at all five sites

(Fig. 1). Reasonable performance at one site did not

guarantee good performance at other sites: compare,

for example, CN-CLASS at Ca-Oas and US-WCr with

the same model at US-MMS (autumn decrease in LAI

predicted approximately 3 months early) or US-UMB

(virtually no seasonality to LAI, perhaps indicating that

the site may have been mistyped as evergreen, rather

than deciduous, forest). For some models, LAI dynam-

ics were poor at most or all sites (e.g., Can-IBIS, DLEM,

LPJ_wsl, SSiB2). For Can-IBIS, deciduous forest LAI

was too high (� 5 m2 m�2) during the winter dormant
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season and did not decline in autumn. Biome-BGC cap-

tured the beginning and end of the season but LAI

increased too slowly over the season. LoTEC, which

optimized leaf onset, development, and abscission at

each site, reproduced leaf onset and LAI values well

but was surprisingly poor at capturing autumn senes-

cence.

Models generally initiated greening up of the canopy

too early in spring (Fig. 2): across all years, sites, and

models, the mean (±1 SD) bias in the date at which

model LAI reached 20% of maximum LAI was

�10 ± 12 days, with a range from �53 to +28 days.

There was, however, considerable variation among

models in the magnitude of this bias. For example,

across all sites, bias in the date at which the 20% LAI

threshold was reached were largest for LPJ_wsl and

BEPS (�19 ± 6 days) and smallest for Ecosys

(�5 ± 6 days) and CN-CLASS (+3 ± 13 days). Can-

IBIS was the only model commonly biased toward

late predictions (+7 ± 10 days) of the onset of spring

increases in LAI (recall however that this model

retained substantial leaf area through the dormant

season).

By comparison, across all years, sites, and models,

the mean bias in the autumn date at which model LAI

dropped to 20% of maximum LAI was +1 ± 32 days,

with a range from �98 to +84 days. For this indicator,

model predictions were generally biased early for ED2

(�5 ± 10 days), LoTEC (�13 ± 9 days), and CN-CLASS

(�30 ± 32 days), but late for all the other models (par-

ticularly LPJ_wsl, +38 ± 28 days). Predictions were

consistently biased late for US-WCr, US-UMB, and

Ca-Oas. At the other two deciduous sites, model perfor-

mance was mixed (Fig. 2).

In spite of these errors in modeling the overall sea-

sonal trajectory of LAI, most models were able to pre-

dict some of the interannual variability in phenology

(that is, year-to-year phenological anomalies) correctly

in spring, but not in autumn (Table 3). Thus, although

model predictions of spring onset dates were biased

overall, the models did correctly represent a significant

fraction of the interannual variability in canopy devel-

opment associated with ‘early’ vs. ‘late’ spring onset.

However, even in the best cases, with correlation coeffi-

cients typically in the range of r � 0.5–0.8, between

30% and 75% of the observed interannual variation

remained unexplained by the models. For eight models,

the correlation between anomalies in observed and

modeled dates at which LAI reached 20% of the sea-

sonal maximum was highly significant in spring (all

P < 0.001; Table 3). However, for only one model, Eco-

sys (r = 0.42, P < 0.05), was there a significant correla-

tion between the observed and modeled anomalies in

the autumn date at which this same threshold was

reached. Furthermore, although models could predict

some of the variation in the spring dates at which LAI

reached 20% and 50% of the seasonal maximum, they

were much less successful at predicting spring dates at

which LAI reached 80% of the seasonal maximum. This

indicates deficiencies in model representation of rates

of leaf growth and the sensitivity of leaf growth to

interannual climate variability. Finally, the amount of

interannual variability predicted by the models was

highly variable; CN-CLASS and LoTEC generally pre-

dicted too much variability in both spring and autumn

developmental threshold dates, whereas in the models

with prescribed phenology, there was of course no

interannual variability in the dates when different

thresholds were reached.

Overall, then, models were generally inadequate in

their representation of the timing, and interannual vari-

ability in the timing, of both spring green-up and

autumn senescence of deciduous forest sites. Better

input data could rectify this problem for the subset of

models using prescribed LAI (Table 2), but in those

with prognostic LAI routines, either model structure or

model parameters need to be improved.

Start and end of photosynthetic activity

For deciduous sites, virtually every one of the 14 mod-

els included in this analysis predicted an earlier onset

of photosynthetic activity (defined as the first date at

which daily GEP = 20% of maximum daily GEP) than

was indicated by the eddy covariance measurements

(Fig. 2). Across all models, sites, and years, the mean

bias in photosynthetic onset date was �28 ± 21 days,

with a range from �108 to +19 days. Relatively small

biases were observed for some models (Ecosys,

�3 ± 6 days; LoTEC, �4 ± 9 days), but large biases, of

more than 6 weeks, were typical for other models (Can-

IBIS, �52 ± 17 days; CN-CLASS, �60 ± 22 days). For

evergreen sites, the same pattern was apparent – with

three minor exceptions (BEPS, +7 ± 8 days, ISAM,

+4 ± 7 days, and LPJ_wsl, +1 ± 14 days), predicted

dates of the onset of photosynthesis were earlier than

the observed dates – but the biases tended to be some-

what smaller than for deciduous forests (mean bias, all

models, sites, and years, �11 ± 15 days). Larger errors

were observed for ORCHIDEE (�18 ± 12 days), Biome-

BGC (�25 ± 10 days), and ED2 (�29 ± 20 days).

In autumn, most models predicted that the photosyn-

thetic activity of deciduous sites (here judged as the last

date at which daily GEP = 20% of maximum daily

GEP) persisted later than was actually observed (mean

error, all models, sites, and years, +15 ± 17 days)

(Fig. 2). Biases were again largest for Can-IBIS

(+45 ± 16 days) and CN-CLASS (+32 ± 23 days); the
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smallest errors were observed for LoTEC (+2 ± 5 days)

and ED2 (�2 ± 13 days). By comparison, for evergreen

sites there was not a strong bias one way or the other

(mean bias, all models, sites, and years, +3 ± 14 days)

with respect to predicting the end of photosynthetic

uptake. On average, some models were too early, and

some models were too late, but for a given model and a

given site, even the sign of the bias could vary from

year-to-year. However, ORCHIDEE (+18 ± 12 days)

and SSiB2 (+18 ± 14 days) were notable exceptions to

this general pattern, because both models predicted

that photosynthetic uptake would continue, on average,

for two and a half weeks longer than was actually

observed at the evergreen sites.
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Fig. 2 Difference in number of days (y axis) between observed and modeled start (left panels) and end (right panels) of photosyntheti-

cally active period for five deciduous broadleaf and five evergreen needleleaf sites. The start and end of photosynthetic uptake are

defined as the first and last dates at which daily gross ecosystem photosynthesis (GEP) = 20% of maximum daily GEP. For each of 14

models (x axis), bars indicate the mean bias, with error bars indicating the standard deviation across multiple years. Circles indicate

bias in the spring and autumn dates at which 20% of seasonal amplitude of leaf area index (LAI) was reached (deciduous sites only).

Negative values indicate that the modeled transition occurred prior to the observed transition.
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For deciduous sites, only about half of the models

could predict interannual variation in the timing of the

spring onset of photosynthesis with any degree of suc-

cess, and none of the models consistently captured

observed variation in the end of photosynthetic uptake.

Six models showed statistically significant correlation

with observed anomalies in spring dates at which

GEP = 20% of maximum GEP (Table 4, top). However,

even for the two best models (ED2, r = 0.66; LoTEC,

r = 0.67), these correlation coefficients, although statis-

tically significant, indicate that models capture no more

than 50% of the observed interannual variation in the

onset of photosynthesis. For the 50% and 80% spring

thresholds of maximum GEP, the number of correla-

tions significant at P < 0.001 was even lower (three and

two models, respectively). For evergreen sites, models

(with the exception of ED2) were generally more suc-

cessful at predicting interannual variation in the timing

of the spring onset of photosynthesis (Table 4, bottom).

Once more, however, the 80% threshold of maximum

GEP was predicted less well than the 20% threshold. At

the end of the growing season, most models, whether

simulating deciduous or evergreen sites, were unable

to explain more than a very small proportion of the in-

terannual variation in the timing of autumn declines in

GEP (Table 4).

For deciduous sites, errors in modeling the seasonal

dynamics of GEP could largely be attributed to errors

in modeling seasonal dynamics of LAI. For both spring

(most models) and autumn (some models), biases in

modeled dates at which 20% thresholds of LAI and

GEP were reached were strongly correlated (for each

model, across all sites, and years) with each other

(Fig. 2; Table 5). Thus, errors in modeling the begin-

ning of canopy development, and the end of canopy

senescence, typically translated directly to correspond-

ing errors in modeling the timing of seasonal dynamics

of GEP. Errors in modeling the dates at which 80%

thresholds of LAI and GEP were reached were less

strongly correlated, probably reflecting a decoupling

between photosynthesis and leaf area in models once

the canopy is more than half-full. There were, however,

some obvious exceptions to these patterns (Fig. 2). For

example, for Can-IBIS, the deciduous sites were mod-

eled with a large LAI in winter, and no autumn decline

in LAI. CN-CLASS retained varying amounts of leaf

area through winter, and for some sites, GEP could

increase in spring before any new foliage was formed.

For LPJ_wsl, leaf area was retained in autumn much

longer than photosynthesis was sustained, resulting in

large biases for LAI, but not GEP, threshold dates.

Source/sink transition dates

As was the case with GEP, virtually every model pre-

dicted an earlier spring source/sink transition than was

actually observed for the deciduous sites (Fig. 3; mean

across all models, sites, and years, �32 ± 36 days).

Biases of more than 6 weeks were typical for some

models (Can-IBIS, �54 ± 42 days; SSiB2, �71 ± 27 days;

Table 3 Correlation coefficient between observations and model predictions of leaf area index (LAI) transition date anomalies

(i.e., years with ‘earlier’ vs. ‘later’ spring). Anomalies were calculated on a site-by-site basis, across all years of data for each site

(deciduous sites only). LAI transition dates were estimated based on dates at which specific relative thresholds of seasonal develop-

ment, i.e., 20%, 50%, 80% of seasonal LAI amplitude, were reached

Model

Spring LAI thresholds Autumn LAI thresholds

20% 50% 80% 80% 50% 20%

BEPS 0.18 0.48 0.12 �0.25 �0.20 0.01

Biome-BGC 0.64*** 0.64*** 0.24 0.23 0.02 �0.29

Can-IBIS 0.57*** 0.46* �0.19

CN-CLASS 0.69*** 0.61*** 0.40* �0.10 �0.14 0.05

DLEM �0.41* �0.03 �0.06 �0.39* �0.11 0.02

Ecosys 0.71*** 0.71*** 0.66*** 0.36 0.47** 0.42*

ED2 0.86*** 0.75*** 0.41* 0.48** 0.59*** 0.26

LoTEC 0.82*** 0.92*** 0.77*** 0.02 0.09 �0.06

LPJ_wsl 0.64*** 0.79*** 0.59*** 0.19 0.00 0.20

ORCHIDEE 0.62*** 0.58*** 0.37* 0.00 �0.02 �0.12

Note: SiB3, SiBCASA, SSiB2, and ISAM were excluded from this analysis because prescribed phenology did not vary from year-to-

year. No autumn correlations are reported for Can-IBIS because predicted LAI did not decrease in autumn.

Asterisks denote statistical significance:

*P < 0.05;

**P < 0.01;

***P < 0.001.
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CN-CLASS, �90 ± 18 days), but biases were negligible

for other models (e.g., LoTEC, �4 ± 7 days and Ecosys,

�5 ± 9 days). Among deciduous sites, the largest

biases (30 days or more) in modeling the spring

source/sink transition data were observed for Ca-Oas,

US-UMB, and US-Ha1.

Model bias in predicting spring source/sink transi-

tion dates was smaller for evergreen sites (mean across

all models, sites, and years, �8 ± 33 days). Several

models (ED2, �36 ± 28 days; SSiB2, �71 ± 25 days)

predicted the transition more than a month early. How-

ever, other models (most notably Can-IBIS, +17 ± 32)

were generally late in predicting the spring source/sink

transition date for evergreen sites.

Across all models, sites, and years, autumn sink/

source transition dates were modeled somewhat better

than spring source/sink transition dates for deciduous

(mean bias, �1 ± 37 days) sites, but considerably worse

for evergreen (+42 ± 58 days) sites. However, within

each forest type, large variation was observed. For

example, for deciduous sites, some models predicted

excessively early autumn source/sink transition dates

(SSiB2, �68 ± 35 days) while others were late (Can-

IBIS, +45 ± 24 days). For evergreen sites, mean model

Table 4 Correlation between observed and modeled gross ecosystem photosynthesis (GEP) transition date anomalies (e.g., years

with ‘earlier’ vs. ‘later’ transition). Transition dates were determined as the first (spring) and last (autumn) day at which daily

GEP = 20%, 50%, or 80% of maximum daily GEP. Anomalies were calculated on a site-by-site basis, across all years of data for each

site

Spring GEP thresholds Autumn GEP thresholds

20% 50% 80% 80% 50% 20%

Deciduous forests

BEPS 0.45** 0.51** 0.63*** �0.10 0.19 0.11

Biome-BGC 0.56*** 0.36* 0.43* 0.19 0.26 �0.16

Can-IBIS 0.20 0.56*** 0.32 0.18 0.05 �0.28

CN-CLASS 0.08 0.14 0.38* 0.21 �0.15 �0.20

DLEM 0.53*** 0.27 0.23 0.47** 0.37* �0.21

Ecosys 0.61*** 0.72*** 0.53*** 0.31 0.15 0.45**

ED2 0.66*** 0.40* 0.10 0.22 �0.02 0.27

ISAM 0.23 0.06 0.42* 0.13 �0.02 �0.23

LoTEC 0.67*** 0.77*** 0.50** 0.00 �0.09 0.28

LPJ_wsl 0.41** 0.28 �0.01 �0.06 0.03 0.32*

ORCHIDEE 0.51*** 0.30 0.11 0.45** 0.37* 0.03

SiB �0.03 0.16 0.42** 0.33* 0.27 �0.34*

SiBCASA �0.07 0.34* 0.13 0.33* 0.31* �0.29

SSiB2 0.12 �0.18 0.36* 0.17 0.31* �0.29

Evergreen forests

BEPS 0.71** 0.37 0.55* 0.34 0.48 0.32

Biome-BGC 0.47** 0.67*** 0.57*** 0.32 0.38* 0.24

Can-IBIS 0.75*** 0.63*** 0.26 0.59*** 0.09 0.42*

CN-CLASS 0.65*** 0.71*** 0.02 0.37* 0.29 0.38*

DLEM 0.88*** 0.56*** 0.05 0.18 0.14 0.38*

Ecosys 0.51** 0.58*** 0.49** 0.12 0.27 0.41*

ED2 0.21 0.49** 0.12 0.36* �0.26 0.18

ISAM 0.80*** 0.56** �0.05 0.45* 0.21 0.27

LoTEC 0.67** 0.69** 0.49 �0.04 0.35 0.42

LPJ_wsl 0.64*** 0.66*** 0.43** 0.20 0.01 0.31

ORCHIDEE 0.59*** 0.46** 0.65*** 0.45** 0.40* 0.18

SIB 0.57*** 0.53*** 0.37* 0.47** 0.30 0.29

SiBCASA 0.45** 0.61*** 0.16 0.41* 0.32 0.34*

SSiB2 0.65*** 0.64*** �0.09 �0.06 0.24 0.37*

Asterisks denote statistical significance: *P < 0.05;

**P < 0.01;

***P < 0.001.
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bias in predicting autumn sink/source transition dates

was relatively small (although somewhat variable) for

some sites (Ca-Qfo, +5 ± 23 days) but very large for

other sites (Ca-Ojp, +80 ± 37 days; US-NR1, +80 ± 52

days). Both ED2 (+87 ± 38 days) and Can-IBIS

(+72 ± 59 days) models predicted autumn source/sink

transition dates for evergreen sites that were more than

2 months later than actually observed.

Although many models predicted a statistically sig-

nificant proportion of the interannual variation in the

first date at which daily GEP = 20% of maximum daily

GEP (Table 4), only a handful of models could predict

the interannual variation in spring source/sink transi-

tion dates (Table 6). Of those, only Biome-BGC and

LoTEC could explain at least half of the observed vari-

ability in spring source/sink transition dates for both

deciduous and evergreen sites. Model skill in predict-

ing autumn sink/source transition date anomalies was

consistently poor (Table 6).

Just as errors in modeling the seasonal cycle of LAI

explained much of the error in modeling the seasonal

cycle of GEP, errors in modeling the seasonal cycle of

GEP explained, for deciduous sites in both spring and

autumn, a sizable fraction of the error in modeling

the observed NEE source/sink and sink/source tran-

sitions (Table 6). Only for BEPS and LPJ_wsl were

errors in predicting NEE transition dates not signi-

ficantly correlated with errors in predicting GEP tran-

sition dates at deciduous sites. But, for evergreen

sites, errors in modeling GEP transition dates gener-

ally did not explain the errors in modeling NEE tran-

sition dates, presumably indicating that interannual

variability in the seasonality of ecosystem respiration

may contribute substantially to variability in NEE

source/sink and sink/source transition dates in this

forest type.

Errors in GEP integrals from incorrect representation of
seasonality

The total bias in modeled annual GEP was

+35 ± 365 g C m�2 yr�1 for deciduous forests and +70 ±
335 g C m�2 yr�1 for evergreen forests (mean ± 1 SD

across all sites, models, and years; for reference, mean

annual GEP was 1250 ± 200 g C m�2 yr�1 in deciduous

forests and 950 ± 375 g C m�2 yr�1 in evergreen for-

ests). By comparison, the total bias in modeled annual

GEP, after correcting for model bias in GEPmax, was +260
± 250 for deciduous forests and +55 ± 130 g C m�2 yr�1

for evergreen forests. Thus, for deciduous sites, re-scal-

ing GEP generally increased the total model bias in

annual GEP, indicating that biases in GEPmax were effec-

tively compensating for other model deficiencies. As an

example, ED2 consistently under-estimated annual GEP

in deciduous sites because model GEPmax was much

smaller than the observed GEPmax. However, when

modeled daily GEP was re-scaled to account for differ-

ences in GEPmax, the model typically over-estimated

annual GEP because the model predicted a longer grow-

ing season thanwas actually observed (Figs 2 and 4).

Biases in annual simulated GEP were driven nearly

equally by misrepresenting the timing of spring and fall

Table 5 Correlation between errors in modeled dates at which gross ecosystem photosynthesis (GEP) and leaf area index (LAI)

thresholds (20%, 50%, 80% of seasonal maximum) were reached, across all deciduous sites

Model

Errors in spring threshold Errors in autumn thresholds

20% 50% 80% 80% 50% 20%

BEPS 0.31 �0.06 0.34 0.65* 0.22 0.82***

Biome-BGC 0.87*** 0.38 0.23 0.00 0.24 0.50*

Can-IBIS 0.67*** 0.36 �0.05

CN-CLASS 0.38* 0.55** 0.50** 0.38* 0.25 �0.25

DLEM 0.54** 0.66*** 0.57** 0.05 0.33 0.44*

Ecosys 0.84*** 0.87*** 0.31 0.23 0.43* 0.66***

ED2 0.77*** 0.50** 0.51** 0.23 0.36 �0.02

ISAM 0.27 0.39* �0.04 �0.02 �0.06 0.14

LoTEC 0.94*** 0.82*** 0.03 0.59** 0.00 0.74***

LPJ_wsl 0.56** 0.31 0.42* 0.00 �0.08 0.10

ORCHIDEE 0.85*** 0.55** 0.46** 0.22 0.25 0.69***

SiB3 0.49** 0.37* 0.07 0.25 0.50** 0.50**

SiBCASA 0.41 0.18 �0.25 0.08 0.57** 0.53*

SSiB2 0.73*** 0.35 0.06 0.26 0.55** 0.53**

Asterisks denote statistical significance: *P < 0.05;

**P < 0.01;

***P < 0.001.
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transitions and by biases in simulated GEPmax. We

showed (Fig. 2) that for most deciduous sites, models

generally predicted an earlier spring onset (first date at

which GEP = 20% of GEPmax) of GEP than was actually

observed, and a later autumn termination (last date at

which GEP = 20% of GEPmax) of GEP than was actually

observed. Thus, not surprisingly, models over-

estimated GEP during both the spring and autumn

transition periods (Fig. 4). What is perhaps surprising

is the magnitude of this bias; across all sites, models,

and years, the mean (±1 SD) total model bias (scaled for

GEPmax) in deciduous forests was +160 ± 145 g C m�2

yr�1 in spring and +75 ± 130 g C m�2 yr�1 in autumn

(Fig. 4). Indeed, together (+235 ± 230 g C m�2 yr�1)

these two biases essentially offset the model error that

could be attributed to differences in modeled vs.

observed GEPmax (�225 ± 440 g C m�2 yr�1), and

accounted for virtually all of the model bias that

remained after correcting for differences in GEPmax

(+260 ± 250 g C m�2 yr�1) for deciduous sites.
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Fig. 3 Difference in number of days (y axis) between observed and modeled start (left panels) and end (right panels) of carbon uptake

period for five deciduous broadleaf and five evergreen needleleaf forest sites. The start and end of the carbon uptake period are defined

as the first spring date and last autumn date, respectively, on which daily net ecosystem exchange of CO2 (NEE) crossed from a source

to a sink, or vice versa. For 13 of 14 models (x axis), bars indicate the mean bias, with error bars indicating the standard deviation across

multiple years. Negative values indicate that the modeled transition occurred prior to the observed transition. No results shown for

ISAM, which did not provide NEE output.
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Biases in model predictions of spring and autumn

GEP transition dates were generally much smaller for

evergreen sites than for deciduous sites (Fig. 3). As a

result, model biases in GEP during seasonal transi-

tion periods (after re-scaling to account for differ-

ences in GEPmax) tended to be smaller than those for

deciduous sites (Fig. 4): +40 ± 80 and �5 ± 65 g C

m�2 yr�1 in spring and autumn, respectively. And,

whereas for deciduous sites, spring (�20% of all

sites, models, and years) and autumn (�10% of all

sites, models, and years) GEP errors of

� 250 g C m�2 yr�1 were common (Fig. 4), they were

rare to nonexistent (�1% and 0%, respectively) for

evergreen sites.

Discussion

Overview and relevance to modeling climate system
feedbacks

The above analysis of predictions from 14 different

terrestrial biosphere models has identified four key

weaknesses in the representation of phenology and

phenologically mediated processes:

Table 6 (Left columns) Correlation between observed and modeled NEE source/sink transition date anomalies (e.g., years with

‘earlier’ vs. ‘later’ transition). Transition dates were determined as the first (spring) and last (autumn) day at which NEE source/

sink transition occurred. Anomalies were calculated on a site-by-site basis, across all years of data for each site. (Right columns)

Correlation between errors in modeled dates at which daily GEP = 20% maximum GEP and NEE source/sink transition dates, in

spring and autumn. NEE is net ecosystem exchange of CO2, and GEP is gross ecosystem photosynthesis

NEE source/sink transition Errors in GEP and NEE transitions

Spring Autumn Spring Autumn

Deciduous forests

BEPS �0.27 �0.06 0.20 �0.16

Biome-BGC 0.70*** 0.34 0.59** 0.83***

Can-IBIS 0.11 0.42** 0.46** 0.60***

CN-CLASS 0.24 �0.07 0.58*** 0.24

DLEM �0.12 0.04 0.29 0.67***

Ecosys 0.53*** 0.38* 0.79*** 0.64***

ED2 0.77*** 0.00 0.76** 0.34

LoTEC 0.71*** 0.08 0.83*** 0.77***

LPJ_wsl 0.24 0.06 0.24 0.28

ORCHIDEE 0.25 0.90*** 0.73*** 0.47**

SiB3 �0.01 �0.19 0.33* 0.47**

SiBCASA 0.14 0.19 0.38* 0.36*

SSiB2 �0.16 �0.01 0.57*** 0.46**

Evergreen forests

BEPS 0.38 �0.07 0.03 0.31

Biome-BGC 0.79*** 0.37 �0.10 �0.11

Can-IBIS �0.03 �0.28 0.51** �0.01

CN-CLASS 0.60*** 0.16 �0.10 0.08

DLEM 0.35 0.09 0.19 �0.26

Ecosys 0.45* �0.24 0.95*** 0.52**

ED2 0.07 0.28 0.88*** �0.05

LoTEC 0.76*** 0.15 0.46 0.76***

LPJ_wsl �0.36 0.04 0.07 �0.06

ORCHIDEE 0.85*** 0.40* 0.54** �0.10

SiB3 0.23 0.03 0.22 0.26

SiBCASA 0.21 �0.16 0.26 0.25

SSiB2 �0.26 0.22 0.46 �0.18

Note: ISAM was excluded from this analysis because model NEE was not provided.

Asterisks denote statistical significance:

*P < 0.05;

**P < 0.01;

***P < 0.001.
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1 Most models are biased toward predicting a growing

season that is substantially longer than the observed

growing season for deciduous forest sites, but biases

are smaller and less consistent for evergreen forest

sites.

2 Models are typically unable to capture more than a

small fraction (albeit, in more than a few cases, a sta-

tistically significant fraction) of the observed interan-

nual variability in phenological transition dates. This

problem is more pronounced for deciduous forest

sites than evergreen forest sites and more pro-

nounced in autumn than in spring.

3 For deciduous sites, errors in modeling the seasonali-

ty of LAI often appear to propagate to errors in mod-

eling the seasonality of GEP. This, in turn, leads to

errors in modeling the seasonality of NEE.

4 Accumulated biases in GEP during spring and

autumn transition periods, attributed to misrepresen-

tation of the seasonality of GEP, are large and highly

variable for deciduous sites: +160 ± 145 and +75 ±
130 g C m�2 yr�1 (�13% and �8% of total annual

GEP), respectively. These tend to offset errors associ-

ated with under-estimation of the magnitude of the

seasonal peak GEP in deciduous sites. Thus, compen-

sating errors may lead to erroneous conclusions

about model performance at the annual time step.

From the perspective of global change science, the

results presented here are important because (1) phe-

nology is sensitive to climate change and variability;

and (2) phenology controls many vegetation feed-

backs to the climate system (Morisette et al., 2009).

Analyses of diverse data sets provide compelling evi-

dence for phenological shifts toward earlier spring

onset and delayed autumn senescence over the last

four decades (Peñuelas et al., 2002; Badeck et al., 2004;

Schwartz et al., 2006; Parmesan, 2007; Parry et al.,

2007). These patterns have largely been attributed to

climate change, particularly recent warming trends.

However, this analysis suggests that current models

are unable to portray adequately the seasonality of

either LAI or processes related to ecosystem carbon

cycling under present climate scenarios. The analysis

by Desai (2010) showed that accurate representation

of interannual variability in phenology is important if

the corresponding variability in net uptake of CO2 is

to be predicted correctly. We expect that most models

(especially those in which phenology is prescribed)

will not accurately predict the associated phenological

responses to future climate change and variability

either, which limits the usefulness of these models for

prognostic studies. As will be discussed below, this is

an outstanding challenge for phenological modeling

in general.

In terms of the second point, our analysis was limited

to the seasonality of LAI and ecosystem-atmosphere

fluxes of CO2. In all likelihood, however, these and sim-

ilar models would also misrepresent other key feed-

backs of terrestrial vegetation to the climate system

during spring and autumn transition periods, e.g.,

through changing albedo, surface energy balance

adjustment, and the changing partitioning of available

energy to latent and sensible heat fluxes. This is of

great importance because in addition to an influence

on microclimate (e.g., ambient surface temperature,

humidity, and radiative transfer through the canopy),

phenology has effects on the planetary boundary

layer, regional-to-global circulation patterns, and thus

continental-scale climatic patterns (Hayden, 1998;

Pielke et al., 1998; Chapin et al., 2000; Hogg et al., 2000;

Fitzjarrald et al., 2001). Failure to represent phenology

accurately in models that couple the land surface to the

atmosphere could lead to large errors in the seasonal

evolution of regional weather patterns, for example.

The study by Levis & Bonan (2004) demonstrated on a

regional scale that when phenology was prescribed,

model runs using the Community Land Model coupled

to the Community Atmosphere Model could not repli-

cate observations that document a reduction in the rate

of increase in surface air temperature that occurs coinci-

dent with spring leaf emergence and associated

increases in transpiration. By comparison, when a prog-

nostic phenology scheme was implemented, the impor-

tant coupling between biological processes on the land

surface and feedbacks to the atmosphere was restored,

thereby improving model performance for this

diagnostic. Thus, accurate model representation of phe-

nology is critical because of the multitude of climate

system feedbacks that are mediated by phenology.

Improving models

What steps are needed to improve phenological sub-

models in terrestrial biosphere models? For deciduous

sites, large biases in predicting the start and end of the

growing season need to be resolved, but models also

need to do a better job of reproducing the interannual

variability in phenology as well. Undoubtedly, progress

requires better understanding of the controls on vegeta-

tion phenology, and the phenology of ecosystem pro-

cesses, in different biomes and across plant functional

types. For example, although the phenology of temper-

ate, deciduous forests is well studied, there is remark-

ably little agreement regarding the degree to which

photoperiod, cold temperatures, and warm tempera-

tures combine to regulate spring budburst in these eco-

systems (Chuine et al., 2010; Körner & Basler, 2010).

Consequently, numerous models to predict budburst

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 566–584
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have been described in the literature (e.g., Chuine,

2000; Hänninen & Kramer, 2007; Richardson & O’Keefe,

2009), but there is no consensus on which model works

best across species or across geographically distinct

populations of a given species.

Forecasts of budburst dates for future climate scenar-

ios are highly uncertain because the predicted response

to warming depends strongly on the underlying model

structure. Failure to incorporate photoperiodic control

and chilling requirements, as is the case for most of the

phenology submodels in the 14 models analyzed here,

will likely result in over-estimation of the response to

future warming (Körner & Basler, 2010). Even ignoring

the impact that such errors would have on other aspects

of biogeochemical cycling and climate system

feedbacks, it is obvious that such biases would only fur-

ther exaggerate the patterns for LAI and GEP reported

here.

In general, neither prescribed nor prognostic schemes

did well in simulating site-level phenology and its

impact on LAI and GEP. However, this general pattern

obscures some notable differences in model structure

and performance, especially as related to the represen-

tation of environmental controls on photosynthesis and

why the models tend to do better at evergreen sites

than deciduous sites. Importantly, the LAI at evergreen

sites stays nearly constant with time whereas the decid-

uous sites lose (nearly) all their leaves each winter. The

timing of spring uptake at evergreen sites is controlled

primarily by temperature, whereas at deciduous sites

spring uptake is controlled by both temperature and

the production of new foliage. Correspondingly, there

are a variety of prognostic schemes for each of several

aspects of phenology; (1) the start of leaf onset for

deciduous species and removal of dormancy for ever-

greens, (2) the progress to full LAI in deciduous species
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and full photosynthetic capacity in evergreens, and (3)

the onset and schedule of leaf loss in deciduous species

and entry into dormancy for cold winter evergreens.

Models usingGDD sumswhich explicitly or implicitly

included a chilling requirement did relatively well in

capturing the onset of LAI and GEP for deciduous and

evergreen forests. Models that used the GDD approach

for deciduous but not evergreen forests (Biome-BGC,

ORCHIDEE) consequently did relatively better for the

deciduous type. LoTEC demonstrated that optimization

of GDDparameters tomulti-yearmean values improved

the model’s ability to capture interannual variability in

spring LAI. However, optimized phenological parame-

ters were site specific, giving this approach limited

power in long-term climate change simulations.

For autumn leaf loss in deciduous species and photo-

synthetic deactivation in evergreens, temperature

thresholds combined with a shorter photoperiod have

some predictive utility although there was a range of

success in the models employing this approach (Ecosys,

Biome-BGC, CN-CLASS, DLEM). In general, most of

the variance in site-level autumn decreases in LAI,

GEP, and NEE were unaccounted for by the models.

Historically, there has been much less of an emphasis

on developing models for autumn phenology, but the

analysis presented here illustrates the need for new

efforts in this direction.

Data needs

Increasing recognition of the importance of phenology

should motivate progress toward disentangling the

mechanisms and environmental drivers of annual phe-

nological cycles. As a starting point, Stöckli et al. (2008)

and Randerson et al. (2009) have emphasized the

importance of developing better data sets with which

to test and evaluate model predictions. Comparative

analyses of different phenological models have typi-

cally used data from only a single site (e.g., Richardson

& O’Keefe, 2009), which hinders the development and

parameterization of generalized models. Only in a very

few studies (e.g., Schaber & Badeck, 2003) have

attempts been made to constrain phenological models

using data across a wide geographic range. Thus,

results from most analyses reflect over-fitting of models

to individuals from a particular population, when in

reality there may be genetic variation across the native

range of a species with respect to the phenological sen-

sitivity to climatic drivers (Chuine et al., 1998). An

additional drawback is that single-site, short-term

observational data often do not span sufficiently wide

ranges of environmental or climatic conditions to falsify

model predictions and thus distinguish among compet-

ing model structures (Hänninen, 1995). Satellite data

offer the promise of global coverage, but are hindered

by issues of both spatial and temporal resolution. Long-

term, spatially extensive ground observations (ideally

characterizing the entire seasonal trajectory of canopy

development and senescence) are therefore urgently

needed to elucidate environmental controls on phenol-

ogy and improve phenological models. Ecosystem-scale

modeling provides an additional challenge, in that it

requires methods for scaling up from the phenology of

individual species to correctly represent the aggregate

phenology of mixed-species stands.

More than a decade ago, Baldocchi et al. (1996) recog-

nized the value of eddy covariance time series of CO2

and H2O exchanges for evaluating and improving

model representation of seasonal vegetation dynamics

– i.e., phenology, and its role in regulating ecosystem

processes related to carbon and water cycling. Indeed,

this has motivated the present analysis. Beyond the

NACP Site Synthesis, there are opportunities for related

analyses that are even broader in scope. With close to a

thousand site-years of measurements, from ecosystems

spanning much of the globe’s climate and vegetation

space, the FLUXNET ‘La Thuile’ database (http://

www.fluxdata.org) is a virtual goldmine for the earth

system modeling community (e.g., Williams et al.,

2009). Also offering promise for improving phenologi-

cal models are ground observations from continental-

scale monitoring networks. For example, citizen science

efforts, such as the USA National Phenology Network

(http://www.usanpn.org) or webcam-based efforts

such as PhenoCam (http://phenocam.sr.unh.edu; see

Richardson et al., 2007, 2009b), could potentially yield

spatially extensive data on the phenology of key plant

functional types. Phenological observations from multi-

factor, manipulative global change experiments (e.g.,

Cleland et al., 2006) would be valuable for constraining

model predictions under novel climatic or environmen-

tal conditions. Combining these diverse observations

within a model-data fusion framework (as described in

Williams et al., 2009), and in conjunction with objective

model selection criteria (as previously applied to phe-

nology models by Richardson & O’Keefe, 2009), it

should be possible to develop and parameterize new

phenological models and make substantial progress

toward reducing biases and uncertainties of the type

that have been documented here.

Conclusion

This analysis has shown that errors in simulating phe-

nology and the seasonality of GEP result in large biases

in modeling the productivity of deciduous broadleaf

forests, whereas model performance was better for

evergreen forests. Improving deciduous forest pheno-
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logical models, particularly the controls on the season-

ality of LAI and relationships among LAI, canopy pho-

tosynthesis and environmental drivers, should

therefore be seen as a priority for the terrestrial bio-

sphere modeling community. This is a prerequisite to

better forecasts of vegetation responses to climate

change and variability and is also essential for reducing

errors in model representation of many biosphere–
atmosphere interactions and climate system feedbacks.
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