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Abstract 

Phenology, by controlling the seasonal activity of vegetation on the land surface, plays a 

fundamental role in regulating photosynthesis and other ecosystem processes, as well as 

competitive interactions and feedbacks to the climate system. We conducted an analysis to 

evaluate the representation of phenology, and the associated seasonality of ecosystem-scale CO2 

exchange, in 14 models participating in the North American Carbon Program Site Synthesis. 

Model predictions were evaluated using long-term measurements (emphasizing the period 2000-

2006) from 10 forested sites within the AmeriFlux and Fluxnet-Canada networks. In deciduous 

forests, almost all models consistently predicted that the growing season started earlier, and 

ended later, than was actually observed; biases of 2 weeks or more were typical. For these sites, 

most models were also unable to explain more than a small fraction of the observed interannual 

variability in phenological transition dates. Finally, for deciduous forests, misrepresentation of 

the seasonal cycle resulted in over-prediction of gross ecosystem photosynthesis by +160 ± 145 g 

C m-2 y-1 during the spring transition period, and +75 ± 130 g C m-2 y-1 during the autumn 

transition period (13% and 8% annual productivity, respectively) compensating for the tendency 

of most models to under-predict the magnitude of peak summertime photosynthetic rates. 

Models did a better job of predicting the seasonality of CO2 exchange for evergreen forests. 

These results highlight the need for improved understanding of the environmental controls on 

vegetation phenology, and incorporation of this knowledge into better phenological models. 

Existing models are unlikely to predict future responses of phenology to climate change 

accurately, and therefore will misrepresent the seasonality and interannual variability of key 

biosphere-atmosphere feedbacks and interactions in coupled global climate models. 
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Introduction 

Phenological transitions drive the seasonal progression of vegetation through stages of 

dormancy, active growth, and senescence. Although phenology has traditionally been concerned 

with physical changes in structure (e.g., leaf development and abscission), the inherent 

seasonality of mass and energy exchange between terrestrial ecosystems and the atmosphere can, 

more generally, be viewed as phenological in nature (Gu et al. 2003). In deciduous forests, the 

relationships between the phenology of canopy structure and function are obvious. In evergreen 

forests, physiological changes within existing foliage (and not the production of new foliage) 

regulate the annual rhythms of photosynthesis and transpiration (e.g. Monson et al. 2005, 

Richardson et al. 2009b). In both forest types, phenological switches, rather than fast responses 

to high-frequency variation in environmental drivers, are controlling the seasonal patterns. 

Phenology is thus a key regulator of ecosystem processes and biosphere feedbacks to the 

climate system (Peñuelas et al. 2009). Phenology influences both spatial and temporal (at 

seasonal-to-interannual time scales) variability in ecosystem productivity (Baldocchi et al. 2001, 

Churkina et al. 2005, Richardson et al. 2009a, 2010, Dragoni et al. 2011), and is of fundamental 

importance for ecosystem carbon cycling, terrestrial carbon sequestration, and mitigation of 

anthropogenic CO2 emissions. Furthermore, phenology affects the following: hydrology (Hogg et 

al. 2000), as leaf-out is accompanied by an increase in evapotranspiration and reduced 

throughfall; nutrient cycling processes (Cooke and Weih 2005), as senescence results in fresh 
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litter inputs to the soil; and atmospheric and climate system feedbacks (Schwartz 1992), as the 

amount and condition of foliage present affects albedo, surface energy balance, and surface 

roughness (Moore et al. 1996, Sakai et al. 1997, Peñuelas et al. 2009).  

It is, therefore, essential that terrestrial biosphere models simulating the temporal 

dynamics of biological processes on the land surface have an accurate representation of 

phenology. This is true whether the model is simple or complex (in terms of the number of 

biogeochemical processes it features, and the degree to which processes are coupled or interact 

with each other), and whether the model is being run for a single site or the entire globe. Indeed, 

Levis and Bonan (2004) highlight the importance of accurate prognostic modeling of phenology, 

and the associated seasonal patterns of canopy leaf area index (LAI), for climate model runs that 

couple a land surface scheme to an atmospheric general circulation model.  

A number of previous studies have evaluated the phenology sub-models included in state-

of-the-art land surface schemes and ecosystem models, and concluded that these routines tend to 

be overly simplistic and result in biased predictions (Kucharik et al. 2006, Ryu et al. 2008). 

Randerson et al. (2009) included phenological metrics as part of a systematic framework, the 

Carbon-LAnd Model intercomparison Project (C-LAMP), to assess the biogeochemical 

component of coupled climate–carbon models. They concluded that model bias towards under-

predicting temperate and boreal forest uptake of CO2 could be attributed to a 1–3 month delay in 

predicting the timing of maximum LAI in these ecosystems, compared to estimates derived from 

MODIS data. Randerson et al. (2009) also noted that the two models they evaluated tended to 

predict a longer growing season than was actually observed in temperate ecosystems, with 

photosynthetic uptake occurring too early in the spring, and too late in the autumn, compared to 

ground observations. Errors in LAI would likely propagate to errors in partitioning the available 
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energy to latent and sensible heat fluxes, and errors in the timing of photosynthetic uptake would 

also affect the seasonality of modeled atmospheric CO2 concentrations, emphasizing the 

importance of accurate representation of phenologically mediated processes. 

In this study we describe an analysis of the representation of phenology, in terms of the 

seasonality of LAI, gross ecosystem photosynthesis (GEP), and net ecosystem exchange (NEE), 

in 14 terrestrial biosphere models that contributed model runs to the North American Carbon 

Program (NACP) Site Synthesis. (We do not intend for this study to be considered a 

comprehensive analysis of all aspects of model performance; complementary NACP efforts 

include the earlier work by Schwalm et al. 2011, and work in preparation by Schaeffer et al., 

Dietze et al., Stoy et al., and Raczka et al.). The five deciduous broadleaf forest and five 

evergreen needleleaf forest sites selected for the analysis are all members of either the 

AmeriFlux or Fluxnet-Canada networks. Our analysis draws on the continuous eddy covariance 

measurements of forest-atmosphere CO2 fluxes that have been made at each site for the last 

decade or more. At the deciduous forest sites, the flux measurements are complemented by 

above- and below-canopy measurements of photosynthetically active radiation, with which the 

seasonal trajectory of LAI can be estimated (e.g. Turner et al 2003). 

The objectives of our analysis are as follows: (1) To assess the accuracy with which 

spring and autumn phenological transitions are predicted by different models; (2) To evaluate 

how these patterns vary between deciduous and evergreen forest types; and (3) To quantify how 

much of the total bias in modeling annual GEP can be attributed to errors in modeling the spring 

and autumn phenological transitions.  
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Data and Method 

Field measurements 

The present analysis uses field measurements and model runs contributed to the North 

American Carbon Program Site Synthesis project (http://nacp.ornl.gov/mast-

dc/int_synthesis.shtml). We restrict our analysis to temperate and boreal deciduous broadleaf and 

evergreen needleleaf sites (5 DBF and 5 ENF sites), with summer active/winter dormant 

seasonality, selected from the NACP “Priority 1” list (Table 1).  

 Eddy covariance measurements of net ecosystem exchange of CO2 (NEE; µmol CO2 m-2 

s-1) supplied by site investigators were gap filled and partitioned to gross ecosystem 

photosynthesis (GEP) and ecosystem respiration according to Barr et al. (2004). The partitioning 

algorithm was compared with a variety of other approaches by Desai et al. (2008). Most 

partitioning methods were found to yield similar seasonal cycles, and estimates of annual GEP 

that were within 10% of each other. This gives us confidence in the partitioning at daily-to-

annual time scales. Furthermore, we argue that the narrow moving window used by the Barr et 

al. algorithm makes it well suited to the seasonality analyses we conduct. Filtering of nocturnal 

NEE measurements during periods of inadequate turbulence was conducted on a site-by-site 

basis using a u* change-point detection algorithm, described and evaluated by Barr et al. (2009, 

2011).  

For deciduous forests (the necessary data were generally not available for evergreen 

conifer sites), the seasonal trajectory of canopy leaf area index (LAI, m2 m-2) was estimated as 

follows. First, we calculated the gap fraction, P, as P = Qt/Qo, where Qo is incident solar 

photosynthetic photon flux density (PPFD) measured above the canopy and Qt is the PPFD 

measured below the canopy. We used measurements of P when the solar zenith angle was closest 
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to 57° (one sample in the morning and one sample in the afternoon), and then calculated LAI for 

each sample as LAI= – log(P)/K where K = G(57)/cos(57). We restricted our analyses to zenith 

angles nearest 57 degrees because at this point, all leaf inclination distribution functions (G) 

converge to 0.5. Then we obtained daily LAI by averaging the two LAI values to consider foliar 

clumping effects (Ryu et al 2010). Noise in the resulting time series, which we attribute mostly 

to cloud effects (variability in direct beam and diffuse PPFD) was smoothed with a spline 

function. We then re-scaled the seasonal trajectory of LAI so that the seasonal peak LAI derived 

in this manner matched with measured LAI as reported on the AmeriFlux web page 

(http://ameriflux.ornl.gov/) or in published manuscripts for each site (see references in Table 1), 

and the seasonal minimum LAI was zero. 

With this approach, we obtained essentially continuous estimates of changes in LAI over 

time for each of the deciduous forest sites. However, the heterogeneous nature of the below-

canopy light environment raises questions about the degree to which these estimates may be 

representative of leaf area dynamics across the larger tower footprint. At four of the five 

deciduous sites, only a single below-canopy quantum sensor was used to measure Qt . At US-

MMS, there were four below-canopy sensors, which no doubt provided better sampling of spatial 

variability in Qt. At none of the sites were field campaigns to measure LAI (e.g., plant canopy 

analyzer or hemispherical photography) conducted at a sufficiently high temporal resolution 

(e.g., weekly) to permit accurate estimation of phenological transition dates. However, where 

such data are available at a lower temporal frequency (e.g., monthly), they provide a context for 

evaluating our LAI estimates. As shown in Figure 1, the mean seasonal course (over multiple 

years) of LAI estimated from P = Qt/Qo (solid black lines) is in good agreement with that 

obtained by the LAI-2000 (Li-Cor Biosciences, Lincoln, NE) plant canopy analyzer instrument 
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(open circles) across a network of plots at each site (no LAI-2000 data for US-WCr). For US-

MMS and US-UMB, the timing of spring and autumn transitions was consistent between the two 

methods. For US-Ha1, there is a clear divergence in early autumn, with the LAI-2000 data 

indicating an earlier decline in leaf area. However, this could simply be an artifact of sampling in 

different years: although Qt data were available for 9 years, and LAI-2000 for 4 years, there was 

only one year of overlap between the two data sets at US-Ha1. For Ca-Oas, LAI-2000 

measurements were made in years with substantial variability in the timing of canopy 

development, and this variability (as shown in Figure 1) masks the otherwise good concordance 

between leaf area index measured with the LAI-2000 and estimated from P = Qt/Qo. Both 

methods were in agreement, for example, on the exceptionally early springs in 1998 and 2001 

and the late onset of leaf development in 1997 and 2004. The above patterns, and the overall 

strong correlation between LAI from the two methods at each site (r > 0.95 for Ca-Oas, US-

MMS, and US-UMB; r = 0.85 for US-Ha1), give us confidence in our retrievals. 

We conclude by noting that while satellite data (e.g., vegetation indices as well as more 

targeted products related to LAI and phenology) offer the promise of global coverage, they suffer 

from tradeoffs between spatial and temporal resolution, and have their own substantial 

uncertainties (e.g. Zhang et al. 2006, Garrigues et al. 2008, White et al. 2009) which in the 

context of the present analysis, make them less suitable benchmarks for model evaluation.  

 

Model runs 

 Participation in the NACP site synthesis was on a volunteer basis, and an open invitation 

was sent to the terrestrial biosphere modeling community. Modeling teams were free to choose 

as simple or as complex a model as they desired. Models were run on a site-by-site basis, using 
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measured environmental drivers (gap filled as necessary using a standardized method, Ricciuto 

et al. in preparation), and site-specific initial conditions (as judged necessary), following a 

standard protocol (http://nacp.ornl.gov/mast-dc/docs/Site_Synthesis_Protocol_v7.pdf). The 

protocol specified spin-up of carbon pools to steady state, but the way in which this was 

implemented varied among modeling teams.  

Of the variety of models for which output was submitted to the NACP database, we 

included only those that appeared to at least superficially capture the seasonal trajectory of 

ecosystem activity. For example, models that did not predict winter dormancy (i.e., if they 

instead predicted significant wintertime photosynthetic uptake) were not included in this 

analysis. The 14 models that were included in our analysis are listed in Table 2. Note that the 

LoTEC model was run in a data assimilation mode, and model parameters were optimized, on a 

site-by-site basis, conditional on the flux measurements. This no doubt contributes to the better 

performance of LoTEC compared to some of the other models in this analysis.  

 

Model Approaches to Phenological Variation 

Critical phenological events influencing carbon uptake in deciduous forests relate to the 

timing of leaf appearance, leaf expansion (increase of LAI), and leaf loss. For evergreen forests, 

a similar classification of foliage activity may be made from winter dormant to fully active and 

then dormant again. The models analyzed here use a variety of methods to determine the amount 

of foliage present and active in a canopy (Table 2). The simplest approach is to prescribe a fixed 

seasonal course of LAI. This approach encompasses the onset and development of foliage and 

also the dynamics of leaf loss. The original version of SiB (Sellers et al. 1986) used monthly LAI 

values that were specific for each plant functional type. A slightly more complicated approach to 
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phenology is to prescribe the presence and amount of foliage based on remote sensing data. SiB2 

(Sellers et al. 1996) used AVHRR data to determine seasonal NDVI and then fPAR and LAI. In 

the present analysis BEPS relies on a global LAI dataset (Deng et al. 2006) derived from SPOT4 

VEGETATION images and corrected for clumping via multi-angle POLDER observations 

(Chen et al. 2005). ED2 is designed to operate with the MODIS LAI product or other 

phenological drivers (Medvigy et al. 2009). Because satellite data are sometimes not available 

(e.g. for prognostic runs), models that use remotely sensed phenological observations may use 

multi-year average LAI and often maintain the flexibility of using other sources. The results 

presented here for the SiB class of models (as well as ISAM), for example, use a single average 

seasonal course of LAI determined for each site.  

Foliage onset and development in plants have long been related to temperature thresholds 

and cumulative heat sums (see e.g. Shelford 1930). This kind of approach is used by a number of 

the models (Table 2). The Ecosys model requires soil surfaces temperatures to exceed specified 

thresholds depending upon latitude for a certain number of hours. Can-IBIS operates in a similar 

fashion based on air temperatures while for deciduous sites DLEM uses a 7-day moving average 

that must exceed a threshold (for evergreen sites, DLEM uses prescribed phenology). The heat 

sum or growing degree day (GDD) approach is used by several models (including Biome-BGC, 

ED2, LoTEC, LPJ_wsl, and ORCHIDEE) for deciduous broadleaf trees but details of the 

implementations vary widely. Biome-BGC combines growing degree days with a radiation sum 

(White et al. 1997). ORCHIDEE requires a chilling sum (Botta et al. 2000) prior to leaf 

initiation; other models implicitly account for chilling by summing degree days after a particular 

date such as January 1. LoTEC is distinct from the other models in that it optimizes parameter 

values to best fit the observed data. Included in the LoTEC optimizations are a leaf initiation 
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GDD threshold and a full canopy GDD sum. These values are determined individually for each 

site and across the data record (the phenological parameters do not vary by year). Some of the 

models (Biome-BGC, ORCHIDEE) use a GDD approach for deciduous trees only; there is no 

explicit phenology (removal of dormancy) for evergreens.  

A final approach, exhibited by CN-CLASS, is to prognostically calculate foliage carbon 

balance. In this method leaf onset starts when daily photosynthesis of virtual leaves exceeds 

daily respiration for 7 consecutive days (Arora and Boer 2005). Virtual photosynthesis and 

respiration are both functions of temperature, and photosynthesis is also a function of soil 

moisture. Once leaf onset occurs, a number of models (Table 2) calculate LAI based on carbon 

allocation principles. These include seasonal allocation rules for different tissues and net foliage 

C gain. 

Several different schemes are used for determining foliage inactivation or shedding. 

These include prescribed LAI (the SiB class models, BEPS, Can-IBIS and ISAM), prognostic 

leaf longevity that varies according to GDD (LPJ_wsl), and various low temperature thresholds. 

Several of the models (Biome-BGC, CN-CLASS, DLEM) combine daylength and temperature 

thresholds based on the results of White et al. (1997). Ecosys requires a set number of hours 

below plant functional type-specific thresholds and shortening photoperiods to initiate litterfall in 

deciduous species and foliage inactivation in evergreens. In some models (e.g. ED2, 

ORCHIDEE), in addition to changes in LAI through the season, there are decreases in 

photosynthetic capacity driven by leaf aging. Leaf loss in LoTEC is determined by a low 

temperature parameter that is optimized for each site. 

 

Data processing and extraction of phenological transition dates 
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 For the deciduous sites, we extracted phenological transition dates from measured and 

modeled LAI trajectories. In addition, for both deciduous and evergreen sites, we included a 

series of diagnostic phenological metrics extracted from the measured and modeled time series 

of NEE and GEP. Transition dates and thresholds were estimated from smoothing splines fit to 

measured and modeled data at the daily time step, as illustrated in Richardson et al. (2010). The 

phenological transition dates we estimated from the data were as follows: 

(1) The first spring and last autumn dates at which measured and modeled LAI = 

20%, 50% and 80% of the seasonal LAI amplitude (deciduous sites only); 

(2) The first spring and last autumn dates at which estimated and modeled daily GEP 

= 20%, 50% and 80% of the seasonal maximum GEP; and 

(3) The first spring and last autumn dates of NEE source/sink transition (restricted to 

source/sink transitions that began or concluded periods of 14 continuous days of 

net CO2 uptake). 

 The relative thresholds (20%, 50% and 80%) were selected to correspond to a range of 

developmental stages, so as to evaluate the ability of models not only to predict “start” and “end” 

of the growing season, but also the overall seasonal pattern. We used relative, rather than 

absolute (e.g. LAI = 1.0 m2 m-2 or GEP = 2 g C m-2 d-1) measures to account for differences in 

magnitude of both leaf area and CO2 fluxes across sites (see also Richardson et al. 2010 for a 

similar approach; alternative methods have been proposed elsewhere, e.g. Gu et al. 2003).  

We calculated transition date anomalies on a site-by-site basis, i.e. as interannual 

departures from the site mean.  

For transition dates, model bias was calculated as the difference, in days, between the 

modeled and the observed transition date. Thus a negative bias indicates that the model predicted 
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the transition date too early in the year, whereas a positive bias indicates the model predicted the 

transition date too late in the year.  

To evaluate the impact of errors in modeling phenological transitions on annual 

ecosystem productivity estimates, we calculated several metrics, beginning with the total model 

bias in annual GEP:  

 Total model bias = (annual model GEP) – (annual tower GEP) [1] 

Three main sources of model error (which may reflect some combination of errors in model 

structure and errors in model parameterization) that contribute to the total model bias in GEP are 

(1) errors in the overall magnitude of modeled GEP; (2) errors in the seasonality of modeled 

GEP; and (3) errors in the sensitivity of modeled GEP to high-frequency variability in 

environmental drivers (e.g., incorrect representation of GEP sensitivity to vapor pressure deficit, 

soil water stress, or air temperature, among other factors). Errors in GEP magnitude, (1), are 

likely due to incorrect specification of photosynthetic parameters such as Amax or Vcmax, and can 

occur independently of errors in (2) or (3). To correct for (1) and emphasize instead a focus on 

errors in seasonality, we re-scaled modeled GEP (daily values) so that the seasonal maxima (as 

determined by the 95th percentile value) of measured and observed GEP were the same. Thus,  

 model GEPre-scaled = model GEP× tower  GEPmaxmodel  GEPmax [2] 

We then calculated the total model bias in annual GEP, corrected for differences in GEPmax, as: 

 Total model bias (scaled for GEPmax) = (annual model GEPre-scaled) – (annual tower GEP)  [3] 

To quantify how much of the model bias could be attributed to errors in seasonality, we defined 

“spring” as the period between the first date (for each site-year of data, for each model run) when 

either model GEP or tower GEP rose to 20% of GEPmax, and the last date when either model 

GEP or tower GEP rose to 80% of GEPmax. “Autumn” was similarly defined as the period 
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between the first date when either model GEP or tower GEP dropped below 80% of GEPmax, and 

the last date when either model GEP or tower GEP dropped below 20% of GEPmax. Put 

differently, “spring” and “autumn” model biases were calculated from model GEPre-scaled and 

tower GEP, with GEP integrals calculated for the period during which either model GEP or 

tower GEP is in the “increasing GEP” phase (0.2 ≤ daily GEP/GEPmax ≤ 0.8) in spring, or 

“decreasing GEP” phase in autumn (0.8 ≥ daily GEP/GEPmax ≥ 0.2). (Thus the first and last dates 

of “spring” and “autumn” varied from year-to-year and across sites, but in each instance the 

same dates were used to define the period of integration for both model GEP and tower GEP. 

Note also that the periods of integration could thus vary among models.) 

  

Results 

Leaf area dynamics 

The modeled seasonal trajectory of deciduous forest LAI suffered from errors in the 

timing of both spring increases and autumn decreases in LAI, as well as errors in the amplitude 

of the seasonal cycle. No single model characterized LAI dynamics well at all five sites (Figure 

1). Reasonable performance at one site did not guarantee good performance at other sites: 

compare, for example, CN-CLASS at Ca-Oas and US-WCr with the same model at US-MMS 

(autumn decrease in LAI predicted approximately 3 months early) or US-UMB (virtually no 

seasonality to LAI, perhaps indicating that the site may have been mistyped as evergreen, rather 

than deciduous, forest). For some models, LAI dynamics were poor at most or all sites (e.g., 

Can-IBIS, DLEM, LPJ_wsl, SSiB2). For Can-IBIS, deciduous forest LAI was too high (≥5 m2 

m-2) during the winter dormant season, and did not decline in autumn. Biome-BGC captured the 

beginning and end of the season but LAI increased too slowly over the season. LoTEC, which 
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optimized leaf onset, development, and abscission at each site, reproduced leaf onset and LAI 

values well but was surprisingly poor at capturing autumn senescence.  

Models generally initiated greening up of the canopy too early in spring (Figure 2): 

across all years, sites, and models, the mean (± 1 SD) bias in the date at which model LAI 

reached 20% of maximum LAI was –10 ± 12 d, with a range from –53 to +28 d. There was, 

however, considerable variation among models in the magnitude of this bias. For example, 

across all sites, bias in the date at which the 20% LAI threshold was reached were largest for 

LPJ_wsl and BEPS (–19 ± 6 d), and smallest for Ecosys (–5 ± 6 d) and CN-CLASS (+3 ± 13 d). 

Can-IBIS was the only model commonly biased towards late predictions (+7 ± 10 d) of the onset 

of spring increases in LAI (recall however that this model retained substantial leaf area through 

the dormant season).  

By comparison, across all years, sites, and models, the mean bias in the autumn date at 

which model LAI dropped to 20% of maximum LAI was +1 ± 32 d, with a range from –98 to 

+84 d. For this indicator, model predictions were generally biased early for ED2 (–5 ± 10 d) , 

LoTEC (–13 ± 9 d), and CN-CLASS (–30 ± 32 d), but late for all the other models (particularly 

LPJ_wsl, +38 ± 28 d). Predictions were consistently biased late for US-WCr, US-UMB and Ca-

Oas. At the other two deciduous sites, model performance was mixed (Figure 2). 

 In spite of these errors in modeling the overall seasonal trajectory of LAI, most models 

were able to predict some of the interannual variability in phenology (that is, year-to-year 

phenological anomalies) correctly in spring, but not in autumn (Table 3). Thus, although model 

predictions of spring onset dates were biased overall, the models did correctly represent a 

significant fraction of the interannual variability in canopy development associated with “early” 

vs. “late” spring onset. However, even in the best cases, with correlation coefficients typically in 
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the range of r ≈ 0.5–0.8, between 30% and 75% of the observed interannual variation remained 

unexplained by the models. For eight models the correlation between anomalies in observed and 

modeled dates at which LAI reached 20% of the seasonal maximum was highly significant in 

spring (all P < 0.001; Table 3). However, for only one model, Ecosys (r = 0.42, P < 0.05), was 

there a significant correlation between the observed and modeled anomalies in the autumn date at 

which this same threshold was reached. Furthermore, while models could predict some of the 

variation in the spring dates at which LAI reached 20% and 50% of the seasonal maximum, they 

were much less successful at predicting spring dates at which LAI reached 80% of the seasonal 

maximum. This indicates deficiencies in model representation of rates of leaf growth, and the 

sensitivity of leaf growth to interannual climate variability. Finally, the amount of interannual 

variability predicted by the models vas highly variable; CN-CLASS and LoTEC generally 

predicted too much variability in both spring and autumn developmental threshold dates, 

whereas in the models with prescribed phenology, there was of course no interannual variability 

in the dates when different thresholds were reached.  

 Overall, then, models were generally inadequate in their representation of the timing, and 

interannual variability in the timing, of both spring green-up and autumn senescence of 

deciduous forest sites. Better input data could rectify this problem for the subset of models using 

prescribed LAI (Table 2), but in those with prognostic LAI routines, either model structure or 

model parameters need to be improved. 

 

Start and end of photosynthetic activity 

 For deciduous sites, virtually every one of the 14 models included in this analysis 

predicted an earlier onset of photosynthetic activity (defined as the first date at which daily GEP 
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= 20% of maximum daily GEP) than was indicated by the eddy covariance measurements 

(Figure 2). Across all models, sites, and years, the mean bias in photosynthetic onset date was –

28 ± 21 d, with a range from –108 to +19 d. Relatively small biases were observed for some 

models (Ecosys, –3 ± 6 d; LoTEC, –4 ± 9 d), but large biases, of more than six weeks, were 

typical for other models (Can-IBIS, –52 ± 17 d; CN-CLASS, –60 ± 22 d). For evergreen sites, 

the same pattern was apparent—with three minor exceptions (BEPS, +7 ± 8 d, ISAM, +4 ± 7 d, 

and LPJ_wsl, +1 ± 14 d), predicted dates of the onset of photosynthesis were earlier than the 

observed dates—but the biases tended to be somewhat smaller than for deciduous forests (mean 

bias, all models, sites, and years, –11 ± 15 d). Larger errors were observed for ORCHIDEE (–18 

± 12 d), Biome-BGC (–25 ± 10 d), and ED2 (–29 ± 20 d).  

In autumn, most models predicted that the photosynthetic activity of deciduous sites (here 

judged as the last date at which daily GEP = 20% of maximum daily GEP) persisted later than 

was actually observed (mean error, all models, sites, and years, +15 ± 17 d) (Figure 2). Biases 

were again largest for Can-IBIS (+45 ± 16 d) and CN-CLASS (+32 ± 23 d); the smallest errors 

were observed for LoTEC (+2 ± 5 d) and ED2 (–2 ± 13 d). By comparison, for evergreen sites 

there was not a strong bias one way or the other (mean bias, all models, sites, and years, +3 ± 14 

d) with respect to predicting the end of photosynthetic uptake. On average, some models were 

too early, and some models were too late, but for a given model and a given site, even the sign of 

the bias could vary from year to year. However, ORCHIDEE (+18 ± 12 d) and SSiB2 (+18 ± 14 

d) were notable exceptions to this general pattern, because both models predicted that 

photosynthetic uptake would continue, on average, for two and a half weeks longer than was 

actually observed at the evergreen sites. 
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 For deciduous sites, only about half of the models could predict interannual variation in 

the timing of the spring onset of photosynthesis with any degree of success, and none of the 

models consistently captured observed variation in the end of photosynthetic uptake. Six models 

showed statistically significant correlation with observed anomalies in spring dates at which GEP 

= 20% of maximum GEP (Table 4, top). However, even for the two best models (ED2, r = 0.66; 

LoTEC, r = 0.67), these correlation coefficients, although statistically significant, indicate that 

models capture no more than 50% of the observed interannual variation in the onset of 

photosynthesis. For the 50% and 80% spring thresholds of maximum GEP, the number of 

correlations significant at P < 0.001 was even lower (three and two models, respectively). For 

evergreen sites, models (with the exception of ED2) were generally more successful at predicting 

interannual variation in the timing of the spring onset of photosynthesis (Table 4, bottom). Once 

more, however, the 80% threshold of maximum GEP was predicted less well than the 20% 

threshold. At the end of the growing season, most models, whether simulating deciduous or 

evergreen sites, were unable to explain more than a very small proportion of the interannual 

variation in the timing of autumn declines in GEP (Table 4). 

For deciduous sites, errors in modeling the seasonal dynamics of GEP could largely be 

attributed to errors in modeling seasonal dynamics of LAI. For both spring (most models) and 

autumn (some models), biases in modeled dates at which 20% thresholds of LAI and GEP were 

reached were strongly correlated (for each model, across all sites and years) with each other 

(Figure 2; Table 5). Thus, errors in modeling the beginning of canopy development, and the end 

of canopy senescence, typically translated directly to corresponding errors in modeling the 

timing of seasonal dynamics of GEP. Errors in modeling the dates at which 80% thresholds of 

LAI and GEP were reached were less strongly correlated, probably reflecting a decoupling 
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between photosynthesis and leaf area in models once the canopy is more than half-full. There 

were, however, some obvious exceptions to these patterns (Figure 2). For example, for Can-IBIS, 

the deciduous sites were modeled with a large LAI in winter, and no autumn decline in LAI. CN-

CLASS retained varying amounts of leaf area through winter, and for some sites GEP could 

increase in spring before any new foliage was formed. For LPJ_wsl, leaf area was retained in 

autumn much longer than photosynthesis was sustained, resulting in large biases for LAI , but 

not GEP, threshold dates. 

 

Source/sink transition dates 

 As was the case with GEP, virtually every model predicted an earlier spring source/sink 

transition than was actually observed for the deciduous sites (Figure 3; mean across all models, 

sites and years, –32 ± 36 d). Biases of more than six weeks were typical for some models (Can-

IBIS, –54 ± 42 d; SSiB2, –71 ± 27 d, CN-CLASS, – 90 ± 18 d), but biases were negligible for 

other models (e.g., LoTEC, –4 ± 7 d, and Ecosys, –5 ± 9 d). Among deciduous sites, the largest 

biases (30 days or more) in modeling the spring source/sink transition data were observed for 

Ca-Oas, US-UMB, and US-Ha1. 

 Model bias in predicting spring source/sink transition dates was smaller for evergreen 

sites (mean across all models, sites and years, –8 ± 33 d). Several models (ED2, –36 ± 28 d; 

SSiB2, –71 ± 25 d) predicted the transition more than a month early. However, other models 

(most notably Can-IBIS, +17 ± 32) were generally late in predicting the spring source/sink 

transition date for evergreen sites. 

  Across all models, sites, and years, autumn sink/source transition dates were modeled 

somewhat better than spring source/sink transition dates for deciduous (mean bias, –1 ± 37 d) 
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sites, but considerably worse for evergreen (+42 ± 58 d) sites. However, within each forest type, 

large variation was observed. For example, for deciduous sites, some models predicted 

excessively early autumn source/sink transition dates (SSiB2, –68 ± 35 d) while others were late 

(Can-IBIS, +45 ± 24 d). For evergreen sites, mean model bias in predicting autumn sink/source 

transition dates was relatively small (although somewhat variable) for some sites (Ca-Qfo, +5 

± 23 d) but very large for other sites (Ca-Ojp, +80 ± 37 d; US-NR1, +80 ± 52 d). Both ED2 (+87 

± 38 d) and Can-IBIS (+72 ± 59 d) models predicted autumn source/sink transition dates for 

evergreen sites that were more than two months later than actually observed. 

 Although many models predicted a statistically significant proportion of the interannual 

variation in the first date at which daily GEP = 20% of maximum daily GEP (Table 4), only a 

handful of models could predict the interannual variation in spring source/sink transition dates 

(Table 6). Of those, only Biome-BGC and LoTEC could explain at least half of the observed 

variability in spring source/sink transition dates for both deciduous and evergreen sites. Model 

skill in predicting autumn sink/source transition date anomalies was consistently poor (Table 6).  

Just as errors in modeling the seasonal cycle of LAI explained much of the error in 

modeling the seasonal cycle of GEP, errors in modeling the seasonal cycle of GEP explained, for 

deciduous sites in both spring and autumn, a sizable fraction of the error in modeling the 

observed NEE source/sink and sink/source transitions (Table 6). Only for BEPS and LPJ_wsl 

were errors in predicting NEE transition dates not significantly correlated with errors in 

predicting GEP transition dates at deciduous sites. But, for evergreen sites, errors in modeling 

GEP transition dates generally did not explain the errors in modeling NEE transition dates, 

presumably indicating that interannual variability in the seasonality of ecosystem respiration may 
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contribute substantially to variability in NEE source/sink and sink/source transition dates in this 

forest type. 

 

Errors in GEP integrals from incorrect representation of seasonality 

 The total bias in modeled annual GEP was +35 ± 365 g C m-2 y-1 for deciduous forests, 

and +70 ± 335 g C m-2 y-1 for evergreen forests (mean ± 1 SD across all sites, models and years; 

for reference, mean annual GEP was 1250 ± 200 g C m-2 y-1 in deciduous forests and 950 ± 375 

g C m-2 y-1 in evergreen forests). By comparison, the total bias in modeled annual GEP, after 

correcting for model bias in GEPmax, was +260 ± 250 for deciduous forests and +55 ± 130 g C m-

2 y-1 for evergreen forests. Thus, for deciduous sites, re-scaling GEP generally increased the total 

model bias in annual GEP, indicating that biases in GEPmax were effectively compensating for 

other model deficiencies. As an example, ED2 consistently under-estimated annual GEP in 

deciduous sites because model GEPmax was much smaller than the observed GEPmax. However, 

when modeled daily GEP was re-scaled to account for differences in GEPmax, the model typically 

over-estimated annual GEP because the model predicted a longer growing season than was 

actually observed (Figure 2, Figure 4).  

 Biases in annual simulated GEP were driven nearly equally by mis-representing the 

timing of spring and fall transitions and by biases in simulated GEPmax. We showed (Figure 2) 

that for most deciduous sites, models generally predicted an earlier spring onset (first date at 

which GEP = 20% of GEPmax) of GEP than was actually observed, and a later autumn 

termination (last date at which GEP = 20% of GEPmax) of GEP than was actually observed. Thus, 

not surprisingly, models over-estimated GEP during both the spring and autumn transition 

periods (Figure 4). What is perhaps surprising is the magnitude of this bias; across all sites, 
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models, and years, the mean (± 1 SD) total model bias (scaled for GEPmax) in deciduous forests 

was +160 ± 145 g C m-2 y-1 in spring, and +75 ± 130 g C m-2 y-1 in autumn (Figure 4). Indeed, 

together (+235 ± 230 g C m-2 y-1) these two biases essentially offset the model error that could be 

attributed to differences in modeled vs. observed GEPmax (–225 ± 440 g C m-2 y-1), and 

accounted for virtually all of the model bias that remained after correcting for differences in 

GEPmax (+260 ± 250 g C m-2 y-1) for deciduous sites.  

 Biases in model predictions of spring and autumn GEP transition dates were generally 

much smaller for evergreen sites than for deciduous sites (Figure 3). As a result, model biases in 

GEP during seasonal transition periods (after re-scaling to account for differences in GEPmax) 

tended to be smaller than those for deciduous sites (Figure 4): +40 ± 80 and –5 ± 65 g C m-2 y-1 

in spring and autumn, respectively. And, whereas for deciduous sites, spring (≈20% of all sites, 

models, and years) and autumn (≈10% of all sites, models, and years) GEP errors of ≥250 g C m-

2 y-1 were common (Figure 4), they were rare to nonexistent (≈1% and 0%, respectively) for 

evergreen sites.  

 

Discussion 

Overview and relevance to modeling climate system feedbacks 

The above analysis of predictions from 14 different terrestrial biosphere models has 

identified four key weaknesses in the representation of phenology and phenologically mediated 

processes: 

(1) Most models are biased towards predicting a growing season that is substantially 

longer than the observed growing season for deciduous forest sites, but biases are 

smaller and less consistent for evergreen forest sites; 
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(2) Models are typically unable to capture more than a small fraction (albeit, in more 

than a few cases, a statistically significant fraction) of the observed interannual 

variability in phenological transition dates. This problem is more pronounced for 

deciduous forest sites than evergreen forest sites, and more pronounced in autumn 

than in spring; 

(3) For deciduous sites, errors in modeling the seasonality of leaf area index (LAI) 

often appear to propagate to errors in modeling the seasonality of gross ecosystem 

photosynthesis (GEP). This, in turn, leads to errors in modeling the seasonality of 

net ecosystem exchange (NEE);  

(4) Accumulated biases in GEP during spring and autumn transition periods, 

attributed to mis-representation of the seasonality of GEP, are large and highly 

variable for deciduous sites: +160 ± 145 and +75 ± 130 g C m-2 y-1 (≈13% and 

≈8% of total annual GEP), respectively. These tend to offset errors associated 

with under-estimation of the magnitude of the seasonal peak GEP in deciduous 

sites. Thus, compensating errors may lead to erroneous conclusions about model 

performance at the annual time step.  

From the perspective of global change science, the results presented here are important 

because (1) phenology is sensitive to climate change and variability; and (2) phenology controls 

many vegetation feedbacks to the climate system (Morisette et al. 2009). Analyses of diverse 

data sets provide compelling evidence for phenological shifts towards earlier spring onset and 

delayed autumn senescence over the last four decades (Peñuelas et al. 2002, Badeck et al. 2004, 

Schwartz et al. 2006, Parry et al. 2007, Parmesan 2007). These patterns have largely been 

attributed to climate change, particularly recent warming trends. However, this analysis suggests 
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that current models are unable to portray adequately the seasonality of either leaf area index or 

processes related to ecosystem carbon cycling under present climate scenarios. The analysis by 

Desai (2010) showed that accurate representation of interannual variability in phenology is 

important if the corresponding variability in net uptake of CO2 is to be predicted correctly. We 

expect that most models (especially those in which phenology is prescribed) will not accurately 

predict the associated phenological responses to future climate change and variability either, 

which limits the usefulness of these models for prognostic studies. As will be discussed below, 

this is an outstanding challenge for phenological modeling in general.  

In terms of the second point, our analysis was limited to the seasonality of LAI and 

ecosystem-atmosphere fluxes of CO2. In all likelihood, however, these and similar models would 

also mis-represent other key feedbacks of terrestrial vegetation to the climate system during 

spring and autumn transition periods, e.g. through changing albedo, surface energy balance 

adjustment, and the changing partitioning of available energy to latent and sensible heat fluxes. 

This is of great importance because in addition to an influence on microclimate (e.g., ambient 

surface temperature, humidity, and radiative transfer through the canopy), phenology has effects 

on the planetary boundary layer, regional-to-global circulation patterns, and thus continental-

scale climatic patterns (Hayden 1998, Pielke 1998, Fitzjarrald et al. 2000, Chapin et al. 2000, 

Hogg et al. 2000). Failure to represent phenology accurately in models that couple the land 

surface to the atmosphere could lead to large errors in the seasonal evolution of regional weather 

patterns, for example. The study by Levis and Bonan (2004) demonstrated on a regional scale 

that when phenology was prescribed, model runs using the Community Land Model (CLM) 

coupled to the Community Atmosphere Model (CAM) could not replicate observations that 

document a reduction in the rate of increase in surface air temperature that occurs coincident 
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with spring leaf emergence and associated increases in transpiration. By comparison, when a 

prognostic phenology scheme was implemented, the important coupling between biological 

processes on the land surface and feedbacks to the atmosphere was restored, thereby improving 

model performance for this diagnostic. Thus, accurate model representation of phenology is 

critical because of the multitude of climate system feedbacks that are mediated by phenology. 

 

Improving models 

What steps are needed to improve phenological sub-models in terrestrial biosphere 

models? For deciduous sites, large biases in predicting the start and end of the growing season 

need to be resolved, but models also need to do a better job of reproducing the interannual 

variability in phenology as well. Undoubtedly, progress requires better understanding of the 

controls on vegetation phenology, and the phenology of ecosystem processes, in different biomes 

and across plant functional types. For example, although the phenology of temperate, deciduous 

forests is well studied, there is remarkably little agreement regarding the degree to which 

photoperiod, cold temperatures, and warm temperatures combine to regulate spring budburst in 

these ecosystems (Körner and Basler 2010, Chuine et al. 2010). Consequently, numerous models 

to predict budburst have been described in the literature (e.g. Chuine 2000, Hänninen and 

Kramer 2007, Richardson and O’Keefe 2009), but there is no consensus on which model works 

best across species, or across geographically distinct populations of a given species.  

Forecasts of budburst dates for future climate scenarios are highly uncertain because the 

predicted response to warming depends strongly on the underlying model structure. Failure to 

incorporate photoperiodic control and chilling requirements, as is the case for most of the 

phenology sub-models in the 14 models analyzed here, will likely result in over-estimation of the 
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response to future warming (Körner and Basler 2010). Even ignoring the impact that such errors 

would have on other aspects of biogeochemical cycling and climate system feedbacks, it is 

obvious that such biases would only further exaggerate the patterns for LAI and GEP reported 

here.  

In general, neither prescribed nor prognostic schemes did well in simulating site-level 

phenology and its impact on LAI and GEP. However, this general pattern obscures some notable 

differences in model structure and performance, especially as related to the representation of 

environmental controls on photosynthesis and why the models tend to do better at evergreen sites 

than deciduous sites. Importantly, the LAI at evergreen sites stays nearly constant with time 

whereas the deciduous sites lose (nearly) all their leaves each winter. The timing of spring uptake 

at evergreen sites is controlled primarily by temperature while at deciduous sites spring uptake is 

controlled by both temperature and the production of new foliage. Correspondingly, there are a 

variety of prognostic schemes for each of several aspects of phenology; 1) the start of leaf onset 

for deciduous species and removal of dormancy for evergreens, 2) the progress to full LAI in 

deciduous species and full photosynthetic capacity in evergreens, and 3) the onset and schedule 

of leaf loss in deciduous species and entry into dormancy for cold winter evergreens. 

Models using growing degree day (GDD) sums which explicitly or implicitly included a 

chilling requirement did relatively well in capturing the onset of LAI and GEP for deciduous and 

evergreen forests. Models that used the GDD approach for deciduous but not evergreen forests 

(Biome-BGC, ORCHIDEE) consequently did relatively better for the deciduous type. LoTEC 

demonstrated that optimization of GDD parameters to multi-year mean values improved the 

model’s ability to capture interannual variability in spring LAI. However, optimized 
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phenological parameters were site specific, giving this approach limited power in long-term 

climate change simulations.  

For autumn leaf loss in deciduous species and photosynthetic deactivation in evergreens, 

temperature thresholds combined with a shorter photoperiod have some predictive utility 

although there was a range of success in the models employing this approach (Ecosys, Biome-

BGC, CN-CLASS, DLEM). In general, most of the variance in site level autumn decreases in 

LAI, GEP, and NEE were unaccounted for by the models. Historically, there has been much less 

of an emphasis on developing models for autumn phenology, but the analysis presented here 

illustrates the need for new efforts in this direction. 

 

Data needs 

Increasing recognition of the importance of phenology should motivate progress towards 

disentangling the mechanisms and environmental drivers of annual phenological cycles. As a 

starting point, Stöckli et al (2008) and Randerson (2009) have emphasized the importance of 

developing better data sets with which to test and evaluate model predictions. Comparative 

analyses of different phenological models have typically used data from only a single site (e.g., 

Richardson and O’Keefe 2009), which hinders the development and parameterization of 

generalized models. Only in a very few studies (e.g., Schaber and Badeck 2003) have attempts 

been made to constrain phenological models using data across a wide geographic range. Thus, 

results from most analyses reflect over-fitting of models to individuals from a particular 

population, when in reality there may be genetic variation across the native range of a species 

with respect to the phenological sensitivity to climatic drivers (Chuine et al. 1998). An additional 

drawback is that single-site, short-term observational data often do not span sufficiently wide 
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ranges of environmental or climatic conditions to falsify model predictions and thus distinguish 

among competing model structures (Hänninen 1995). Satellite data offer the promise of global 

coverage, but are hindered by issues of both spatial and temporal resolution. Long-term, spatially 

extensive ground observations (ideally characterizing the entire seasonal trajectory of canopy 

development and senescence) are therefore urgently needed to elucidate environmental controls 

on phenology and improve phenological models. Ecosystem-scale modeling provides an 

additional challenge, in that it requires methods for scaling up from the phenology of individual 

species to correctly represent the aggregate phenology of mixed-species stands. 

More than a decade ago, Baldocchi et al. (1996) recognized the value of eddy covariance 

time series of CO2 and H2O exchanges for evaluating and improving model representation of 

seasonal vegetation dynamics — i.e., phenology, and its role in regulating ecosystem processes 

related to carbon and water cycling. Indeed, this has motivated the present analysis. Beyond the 

NACP Site Synthesis, there are opportunities for related analyses that are even broader in scope. 

With close to a thousand site-years of measurements, from ecosystems spanning much of the 

globe’s climate and vegetation space, the FLUXNET “La Thuile” database 

(http://www.fluxdata.org) is a virtual goldmine for the earth system modeling community (e.g., 

Williams et al. 2009). Also offering promise for improving phenological models are ground 

observations from continental-scale monitoring networks. For example, citizen science efforts 

such as the USA National Phenology Network, (http://www.usanpn.org) or webcam-based 

efforts such as PhenoCam, (http://phenocam.sr.unh.edu; see Richardson et al. 2007, 2009b), 

could potentially yield spatially extensive data on the phenology of key plant functional types. 

Phenological observations from multifactor, manipulative global change experiments (e.g. 

Cleland et al. 2006) would be valuable for constraining model predictions under novel climatic 
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or environmental conditions. Combining these diverse observations within a data model fusion 

framework (as described in Williams et al. 2009), and in conjunction with objective model 

selection criteria (as previously applied to phenology models by Richardson and O’Keefe 2009), 

it should be possible to develop and parameterize new phenological models and make substantial 

progress towards reducing biases and uncertainties of the type that have been documented here.  

 

Conclusion 

 This analysis has shown that errors in simulating phenology and the seasonality of GEP 

result in large biases in modeling the productivity of deciduous broadleaf forests, whereas model 

performance was better for evergreen forests. Improving deciduous forest phenological models, 

particularly the controls on the seasonality of leaf area index and relationships among LAI, 

canopy photosynthesis and environmental drivers, should therefore be seen as a priority for the 

terrestrial biosphere modeling community. This is a prerequisite to better forecasts of vegetation 

responses to climate change and variability, and is also essential for reducing errors in model 

representation of many biosphere-atmosphere interactions and climate system feedbacks.  
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Figure 1. The mean seasonal trajectory of observed and simulated leaf area index (LAI), for five 
deciduous broadleaf sites. The continuous observed LAI is derived from gap fraction 
estimates based on  above- and below-canopy measurements of photosynthetically active 
radiation. Open circles show periodic LAI measurements made using an LAI-2000 plant 
canopy analyzer.  
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Figure 2. Difference in number of days (y axis) between observed and modeled start (left panels) 
and end (right panels) of photosynthetically active period for 5 deciduous broadleaf and 5 
evergreen needleleaf sites. The start and end of photosynthetic uptake are defined as the first and 
last dates at which daily GEP = 20% of maximum daily GEP (gross ecosystem photosynthesis). 
For each of 14 models (x axis), bars indicate the mean bias, with error bars indicating the 
standard deviation across multiple years. Circles indicate bias in the spring and autumn dates at 
which 20% of seasonal amplitude of LAI was reached (deciduous sites only). Negative values 
indicate that the modeled transition occurred prior to the observed transition.  
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Figure 3. Difference in number of days (y axis) between observed and modeled start (left panels) 
and end (right panels) of carbon uptake period for 5 deciduous broadleaf and 5 evergreen 
needleleaf forest sites. The start and end of the carbon uptake period are defined as the first 
spring date, and last autumn date, respectively, on which daily net ecosystem exchange of CO2 
(NEE) crossed from a source to a sink, or vice versa. For 13 of 14 models (x axis), bars indicate 
the mean bias, with error bars indicating the standard deviation across multiple years. Negative 
values indicate that the modeled transition occurred prior to the observed transition. No results 
shown for ISAM, which did not provide NEE output. 
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Figure 4. Errors in modeled gross ecosystem photosynthesis (GEP) for deciduous broadleaf 
(top), and evergreen needleleaf (bottom) forests. Left panels show error, by model (means and 
standard deviations across multiple years of data for n = 5 sites), as follows: “Total model bias” 
is (annual model GEP) – (annual tower GEP); “Total model bias (scaled for GEPmax)” re-scales 
the modeled GEP to account for order-of-magnitude differences between model and tower 
GEPmax, and then calculates the bias as (annual model GEPre-scaled) – (annual tower GEP); 
“Spring” and “Autumn” model biases are calculated from model GEPre-scaled and tower GEP, with 
sums calculated for the period during which either model GEP or tower GEP is in the “increasing 
GEP” phase (0.2 ≤ daily GEP/GEPmax ≤ 0.8) in spring, or “decreasing GEP” phase in autumn 
(0.8 ≥ daily GEP/GEPmax ≥ 0.2). The right panels show the frequency distribution of these spring 
and autumn biases in re-scaled model GEP, across all models, sites, and years of data, for each 
forest type: models show a strong and consistent bias in both spring and autumn in deciduous, 
but not evergreen, forests. The sign convention is that positive bias means that modeled GEP > 
tower GEP.  
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