76 research outputs found

    CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

    Get PDF
    © 2018 Author(s). As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications

    The 2020 photovoltaic technologies roadmap

    Get PDF
    Over the past decade, the global cumulative installed photovoltaic (PV) capacity has grown exponentially, reaching 591 GW in 2019. Rapid progress was driven in large part by improvements in solar cell and module efficiencies, reduction in manufacturing costs and the realization of levelized costs of electricity that are now generally less than other energy sources and approaching similar costs with storage included. Given this success, it is a particularly fitting time to assess the state of the photovoltaics field and the technology milestones that must be achieved to maximize future impact and forward momentum. This roadmap outlines the critical areas of development in all of the major PV conversion technologies, advances needed to enable terawatt-scale PV installation, and cross-cutting topics on reliability, characterization, and applications. Each perspective provides a status update, summarizes the limiting immediate and long-term technical challenges and highlights breakthroughs that are needed to address them. In total, this roadmap is intended to guide researchers, funding agencies and industry in identifying the areas of development that will have the most impact on PV technology in the upcoming years

    Search for the standard model Higgs boson at LEP

    Get PDF

    Ramipril and Risk of Hyperkalemia in Chronic Hemodialysis Patients

    Get PDF
    Angiotensin converting enzyme (ACE) inhibitors provide well known cardiorenal-protective benefits added to antihypertensive effects in chronic renal disease. These agents are underused in management of patients receiving hemodialysis (HD) because of common concern of hyperkalemia. However, few studies have investigated effect of renin angiotensin aldosterone system (RAAS) blockade on serum potassium in hemodialysis patients. We assessed the safety of ramipril in patients on maintenance HD. We enrolled 28 adult end stage renal disease (ESRD) patients treated by maintenance HD and prescribed them ramipril in doses of 1.25 to 5 mg per day. They underwent serum potassium concentration measurements before ramipril introduction and in 1 to 3 months afterwards. No significant increase in kalemia was found. Results of our study encourage the use of ACE inhibitors in chronically hemodialyzed patients, but close potassium monitoring is mandatory

    Extrasolar enigmas: from disintegrating exoplanets to exoasteroids

    Full text link
    Thousands of transiting exoplanets have been discovered to date, thanks in great part to the {\em Kepler} space mission. As in all populations, and certainly in the case of exoplanets, one finds unique objects with distinct characteristics. Here we will describe the properties and behaviour of a small group of `disintegrating' exoplanets discovered over the last few years (KIC 12557548b, K2-22b, and others). They evaporate, lose mass unraveling their naked cores, produce spectacular dusty comet-like tails, and feature highly variable asymmetric transits. Apart from these exoplanets, there is observational evidence for even smaller `exo-'objects orbiting other stars: exoasteroids and exocomets. Most probably, such objects are also behind the mystery of Boyajian's star. Ongoing and upcoming space missions such as {\em TESS} and PLATO will hopefully discover more objects of this kind, and a new era of the exploration of small extrasolar systems bodies will be upon us.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    A Search for New Back Contacts for CdTe Solar Cells

    No full text
    There is widespread interest in reaching the practical efficiency of cadmium telluride (CdTe) thin-film solar cells, which suffer from significant open-circuit voltage loss due to high surface recombination velocity and Schottky barrier at the back contact. Here, we focus on back contacts in the superstrate configuration with the goal of finding new materials, that can provide improved passivation, electron reflection and hole transport properties compared to the commonly used material, ZnTe. We performed a computational search among 229 binary and ternary tetrahedrally-bonded structures using first-principles methods and transport models to evaluate critical materials design criteria, including phase stability, electronic structure, hole transport, band alignments, and p-type dopability. Through this search, we have identified several candidate materials and their alloys (AlAs, AgAlTe2, ZnGeP2, ZnSiAs2, CuAlTe2) that exhibit promising properties for back contacts. We hope these new material recommendations and associated guidelines will inspire new directions in hole transport layer design for CdTe solar cells

    Revisiting the Terawatt Challenge

    No full text
    Richard E. Smalley, in 2003, defined the Terawatt (TW) Challenge as “Adapting our energy infrastructure to simultaneously address diminishing oil resources and rising levels of atmospheric CO 2.” Smalley, best known for the discovery of C 60, for which he received the 1996 Nobel Prize in Chemistry, continued to address the challenges of anthropomorphic and natural global energy flows until he passed away in 2005. Smalley challenged the world to transform the energy sector. He envisioned electricity transmitted by high-voltage direct current (DC) lines from massively deployed solar plants in sunny areas and remotely sited nuclear plants. He also envisioned using advanced batteries for local storage of energy. To meet the needs of ~10 people in a world with a dwindling oil supply, Smalley asserted that the world would need to transform its fossil-fuel-driven 14-TW (average power) energy used in 2003 to a largely renewable-energy-driven 30–60 TW (average power) in 2050. This would be possible only if solar-electricity costs could be drastically reduced. The challenges associated with this transition have been called the “Terawatt Challenge.” Fifteen years later, solar-module costs have been reduced by tenfold and annual deployment of solar photovoltaic (PV) modules has grown by a factor of 100,from ~1 gigawatt (GW) in 2004 to ~100 GW in 2018, with a total of 500 GW installed worldwide, producing 2% of the planet’s electricity. As global installed solar generating capacity approaches1 TW, we revisit Smalley’s TW challenge to identify what has changed and quantify the TW Challenge for a baseline scenario and for two scenarios designed as upper and lower bounds determined by the degree we implement electrification and storage. In this paper, we show that the energy choices we make today will dramatically affect the magnitude of future global energy requirements
    • 

    corecore