2,942 research outputs found

    Can continental bogs with stand the pressure due to climate change?

    Get PDF
    Not all peatlands are alike. Theoretical and process based models suggest that ombrogenic, oligotrophic peatlands can withstand the pressures due to climate change because of the feedbacks among ecosystem production, decomposition and water storage. Although there have been many inductive explanations inferring from paleo-records, there is a lack of deductive empirical tests of the models predictions of these systems’ stability and there are few records of the changes in the net ecosystem carbon balance (NECB) of peatlands that are long enough to examine the dynamics of the NECB in relation to climate variability. Continuous measurements of all the components of the NECB and the associated general climatic and environmental conditions have been made at the Mer Bleue (MB) peatland, a large, 28 km2, 5 m deep, raised ombro-oligotrophic, shrub and Sphagnum covered bog, near Ottawa, Canada from May 1, 1998 until the present. The sixteen-year daily CO2, CH4, and DOC flux and NECB covers a wide range of variability in peatland water storage from very dry to very wet growing seasons. We used the MB data to test the extent of MB peatland’s stability and the strength of the underlying key feedback between the NECB and changes in water storage projected by the models. In 2007 we published a six-year (1999-2004) net ecosystem carbon balance (NECB) for MB of ∼22 ± 40 g C m-2 yr-1, but we have since recalculated the 1998-2004 NECB to be 32 ± 40 g C m-2 yr-1 based on a reanalyzed average NEP of 51 ± 41 g C m-2 yr-1. Over the same period the net loss of C via the CH4 and DOC fluxes were -4 ± 1 and -15 ± 3 g C m-2 yr-1. The 1998-2004 six-year MB average NECB is similar to the long-term C accumulation rate, estimated from MB peat cores, for the last 3,000 years. The post 2004 MB NEP has increased to an average of ∼96 ± 32 g C m-2 yr-1 largely to there being generally wetter growing seasons. The losses of C via DOC (18 ± 1 g C m-2 yr-1) and CH4 (7 ± 4 g C m-2 yr-1) while showing considerable year-to-year variability are not significantly different post 2004. Hence, the proportional loss of C as DOC and CH4 in the MB NECB is slightly less post-2004 than it was before 2004 though the cumulative errors preclude statistically differences. As a result the MB NECB has increased to 79 ± 29 g C m-2 yr-1 post 2004 yielding a 14 year contemporary NECB of 56 ± 36 g C m-2 yr-1, which is double the long-term accumulation rate of C. The variability in the annual NECB and growing season mean NEP for the MB bog can be explained (r2 = 0.35, p \u3c 0.01) by the variability in growing season water table depth. These results suggest the carbon balance – water table feedback is sufficient enough to create stability in continental bogs so they will withstand a considerable amount of climate change

    Heavily glycosylated, highly fit SIVMne variants continue to diversify and undergo selection after transmission to a new host and they elicit early antibody dependent cellular responses but delayed neutralizing antibody responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lentiviruses such as human and simian immunodeficiency viruses (HIV and SIV) undergo continual evolution in the host. Previous studies showed that the late-stage variants of SIV that evolve in one host replicate to significantly higher levels when transmitted to a new host. However, it is unknown whether HIVs or SIVs that have higher replication fitness are more genetically stable upon transmission to a new host. To begin to address this, we analyzed the <it>envelope </it>sequence variation of viruses that evolved in animals infected with variants of SIVMne that had been cloned from an index animal at different stages of infection.</p> <p>Results</p> <p>We found that there was more evolution of <it>envelope </it>sequences from animals infected with the late-stage, highly replicating variants than in animals infected with the early-stage, lower replicating variant, despite the fact that the late virus had already diversified considerably from the early virus in the first host, prior to transmission. Many of the changes led to the addition or shift in potential-glycosylation sites-, and surprisingly, these changes emerged in some cases prior to the detection of neutralizing antibody responses, suggesting that other selection mechanisms may be important in driving virus evolution. Interestingly, these changes occurred after the development of antibody whose anti-viral function is dependent on Fc-Fcγ receptor interactions.</p> <p>Conclusion</p> <p>SIV variants that had achieved high replication fitness and escape from neutralizing antibodies in one host continued to evolve upon transmission to a new host. Selection for viral variants with glycosylation and other envelope changes may have been driven by both neutralizing and Fcγ receptor-mediated antibody activities.</p

    Structure of the hDmc1-ssDNA filament reveals the principles of its architecture

    Get PDF
    In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination

    Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action

    Get PDF
    Chemogenomic screens were performed in both budding and fission yeasts, allowing for a cross-species comparison of drug–gene interaction networks.Drug–module interactions were more conserved than individual drug–gene interactions.Combination of data from both species can improve drug–module predictions and helps identify a compound's mode of action

    CHILES: HI morphology and galaxy environment at z=0.12 and z=0.17

    Get PDF
    We present a study of 16 HI-detected galaxies found in 178 hours of observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES). We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <= 0.183 which are among the worst affected by radio frequency interference (RFI). While this represents only 10% of the total frequency coverage and 18% of the total expected time on source compared to what will be the full CHILES survey, we demonstrate that our data reduction pipeline recovers high quality data even in regions severely impacted by RFI. We report on our in-depth testing of an automated spectral line source finder to produce HI total intensity maps which we present side-by-side with significance maps to evaluate the reliability of the morphology recovered by the source finder. We recommend that this become a common place manner of presenting data from upcoming HI surveys of resolved objects. We use the COSMOS 20k group catalogue, and we extract filamentary structure using the topological DisPerSE algorithm to evaluate the \hi\ morphology in the context of both local and large-scale environments and we discuss the shortcomings of both methods. Many of the detections show disturbed HI morphologies suggesting they have undergone a recent interaction which is not evident from deep optical imaging alone. Overall, the sample showcases the broad range of ways in which galaxies interact with their environment. This is a first look at the population of galaxies and their local and large-scale environments observed in HI by CHILES at redshifts beyond the z=0.1 Universe.Comment: 23 pages, 12 figures, 1 interactive 3D figure, accepted to MNRA

    Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic

    Get PDF
    The role of iron in enhancing phytoplankton productivity in high nutrient, low chlorophyll oceanic regions was demonstrated first through iron-addition bioassay experiments1 and subsequently confirmed by large-scale iron fertilization experiments2. Iron supply has been hypothesized to limit nitrogen fixation and hence oceanic primary productivity on geological timescales3, providing an alternative to phosphorus as the ultimate limiting nutrient4. Oceanographic observations have been interpreted both to confirm and refute this hypothesis5, 6, but direct experimental evidence is lacking7. We conducted experiments to test this hypothesis during the Meteor 55 cruise to the tropical North Atlantic. This region is rich in diazotrophs8 and strongly impacted by Saharan dust input9. Here we show that community primary productivity was nitrogen-limited, and that nitrogen fixation was co-limited by iron and phosphorus. Saharan dust addition stimulated nitrogen fixation, presumably by supplying both iron and phosphorus10, 11. Our results support the hypothesis that aeolian mineral dust deposition promotes nitrogen fixation in the eastern tropical North Atlantic
    corecore