280 research outputs found

    New developments in probing and targeting protein acylation in malaria, leishmaniasis and African sleeping sickness

    Get PDF
    Infections by protozoan parasites, such as Plasmodium falciparum or Leishmania donovani, have a significant health, social and economic impact and threaten billions of people living in tropical and sub-tropical regions of developing countries worldwide. The increasing range of parasite strains resistant to frontline therapeutics makes the identification of novel drug targets and the development of corresponding inhibitors vital. Post-translational modifications (PTMs) are important modulators of biology and inhibition of protein lipidation has emerged as a promising therapeutic strategy for treatment of parasitic diseases. In this review we summarize the latest insights into protein lipidation in protozoan parasites. We discuss how recent chemical proteomic approaches have delivered the first global overviews of protein lipidation in these organisms, contributing to our understanding of the role of this PTM in critical metabolic and cellular functions. Additionally, we highlight the development of new small molecule inhibitors to target parasite acyl transferases

    Global Profiling and Inhibition of Protein Lipidation in Vector and Host Stages of the Sleeping Sickness Parasite Trypanosoma brucei

    Get PDF
    The enzyme N-myristoyltransferase (NMT) catalyzes the essential fatty acylation of substrate proteins with myristic acid in eukaryotes and is a validated drug target in the parasite Trypanosoma brucei, the causative agent of African trypanosomiasis (sleeping sickness). N-Myristoylation typically mediates membrane localization of proteins and is essential to the function of many. However, only a handful of proteins are experimentally validated as N-myristoylated in T. brucei. Here, we perform metabolic labeling with an alkyne-tagged myristic acid analogue, enabling the capture of lipidated proteins in insect and host life stages of T. brucei. We further compare this with a longer chain palmitate analogue to explore the chain length-specific incorporation of fatty acids into proteins. Finally, we combine the alkynyl-myristate analogue with NMT inhibitors and quantitative chemical proteomics to globally define N-myristoylated proteins in the clinically relevant bloodstream form parasites. This analysis reveals five ARF family small GTPases, calpain-like proteins, phosphatases, and many uncharacterized proteins as substrates of NMT in the parasite, providing a global view of the scope of this important protein modification and further evidence for the crucial and pleiotropic role of NMT in the cell

    Global Analysis of Protein N-Myristoylation and Exploration of N-Myristoyltransferase as a Drug Target in the Neglected Human Pathogen Leishmania donovani

    Get PDF
    N-Myristoyltransferase (NMT) modulates protein function through the attachment of the lipid myristate to the N terminus of target proteins, and is a promising drug target in eukaryotic parasites such as Leishmania donovani. Only a small number of NMT substrates have been characterized in Leishmania, and a global picture of N-myristoylation is lacking. Here, we use metabolic tagging with an alkyne-functionalized myristic acid mimetic in live parasites followed by downstream click chemistry and analysis to identify lipidated proteins in both the promastigote (extracellular) and amastigote (intracellular) life stages. Quantitative chemical proteomics is used to profile target engagement by NMT inhibitors, and to define the complement of N-myristoylated proteins. Our results provide new insight into the multiple pathways modulated by NMT and the pleiotropic effects of NMT inhibition. This work constitutes the first global experimental analysis of protein lipidation in Leishmania, and reveals the extent of NMT-related biology yet to be explored for this neglected human pathogen

    Prednisolone or pentoxifylline for alcoholic hepatitis

    Get PDF
    BACKGROUND: Alcoholic hepatitis is a clinical syndrome characterized by jaundice and liver impairment that occurs in patients with a history of heavy and prolonged alcohol use. The short-term mortality among patients with severe disease exceeds 30%. Prednisolone and pentoxifylline are both recommended for the treatment of severe alcoholic hepatitis, but uncertainty about their benefit persists.METHODS: We conducted a multicenter, double-blind, randomized trial with a 2-by-2 factorial design to evaluate the effect of treatment with prednisolone or pentoxifylline. The primary end point was mortality at 28 days. Secondary end points included death or liver transplantation at 90 days and at 1 year. Patients with a clinical diagnosis of alcoholic hepatitis and severe disease were randomly assigned to one of four groups: a group that received a pentoxifylline-matched placebo and a prednisolone-matched placebo, a group that received prednisolone and a pentoxifylline-matched placebo, a group that received pentoxifylline and a prednisolone-matched placebo, or a group that received both prednisolone and pentoxifylline.RESULTS: A total of 1103 patients underwent randomization, and data from 1053 were available for the primary end-point analysis. Mortality at 28 days was 17% (45 of 269 patients) in the placebo-placebo group, 14% (38 of 266 patients) in the prednisolone-placebo group, 19% (50 of 258 patients) in the pentoxifylline-placebo group, and 13% (35 of 260 patients) in the prednisolone-pentoxifylline group. The odds ratio for 28-day mortality with pentoxifylline was 1.07 (95% confidence interval [CI], 0.77 to 1.49; P=0.69), and that with prednisolone was 0.72 (95% CI, 0.52 to 1.01; P=0.06). At 90 days and at 1 year, there were no significant between-group differences. Serious infections occurred in 13% of the patients treated with prednisolone versus 7% of those who did not receive prednisolone (P=0.002).CONCLUSIONS: Pentoxifylline did not improve survival in patients with alcoholic hepatitis. Prednisolone was associated with a reduction in 28-day mortality that did not reach significance and with no improvement in outcomes at 90 days or 1 year. (Funded by the National Institute for Health Research Health Technology Assessment program; STOPAH EudraCT number, 2009-013897-42 , and Current Controlled Trials number, ISRCTN88782125 ).</p

    The Atacama Cosmology Telescope: Data Characterization and Map Making

    Get PDF
    We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2 hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial equator. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. Out of 1260 survey hours and 1024 detectors per array, 816 hours and 593 effective detectors remain after data selection for this frequency band, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector noise covariance at low frequencies in the TOD. The maps were made by solving the least-squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Cross-correlation with WMAP sky maps, as well as analysis from simulations, reveal that our maps are unbiased at multipoles ell > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.Comment: 20 pages, 18 figures, 6 tables, an ACT Collaboration pape

    Pseudomonas aeruginosa utilises the host‐derived polyamine spermidine to facilitate antimicrobial tolerance

    Get PDF
    Pseudomonas aeruginosa undergoes diversification during infection of the cystic fibrosis (CF) lung. Understanding these changes requires model systems that capture the complexity of the CF lung environment. We previously identified loss-of-function mutations in the 2-component regulatory system sensor kinase gene pmrB in P. aeruginosa from CF lung infections and from experimental infection of mice. Here, we demonstrate that, while such mutations lowered in vitro minimum inhibitory concentrations for multiple antimicrobial classes, this was not reflected in increased antibiotic susceptibility in vivo. Loss of PmrB impaired aminoarabinose modification of LPS, increasing the negative charge of the outer membrane and promoting uptake of cationic antimicrobials. However, in vivo, this could be offset by increased membrane binding of other positively charged molecules present in lungs. The polyamine spermidine readily coated the surface of PmrB-deficient P. aeruginosa, reducing susceptibility to antibiotics that rely on charge differences to bind the outer membrane and increasing biofilm formation. Spermidine was elevated in lungs during P. aeruginosa infection in mice and during episodes of antimicrobial treatment in people with CF. These findings highlight the need to study antimicrobial resistance under clinically relevant environmental conditions. Microbial mutations carrying fitness costs in vitro may be advantageous during infection, where host resources can be utilized

    Impact of the Genome on the Epigenome Is Manifested in DNA Methylation Patterns of Imprinted Regions in Monozygotic and Dizygotic Twins

    Get PDF
    One of the best studied read-outs of epigenetic change is the differential expression of imprinted genes, controlled by differential methylation of imprinted control regions (ICRs). To address the impact of genotype on the epigenome, we performed a detailed study in 128 pairs of monozygotic (MZ) and 128 pairs of dizygotic (DZ) twins, interrogating the DNA methylation status of the ICRs of IGF2, H19, KCNQ1, GNAS and the non-imprinted gene RUNX1. While we found a similar overall pattern of methylation between MZ and DZ twins, we also observed a high degree of variability in individual CpG methylation levels, notably at the H19/IGF2 loci. A degree of methylation plasticity independent of the genome sequence was observed, with both local and regional CpG methylation changes, discordant between MZ and DZ individual pairs. However, concordant gains or losses of methylation, within individual twin pairs were more common in MZ than DZ twin pairs, indicating that de novo and/or maintenance methylation is influenced by the underlying DNA sequence. Specifically, for the first time we showed that the rs10732516 [A] polymorphism, located in a critical CTCF binding site in the H19 ICR locus, is strongly associated with increased hypermethylation of specific CpG sites in the maternal H19 allele. Together, our results highlight the impact of the genome on the epigenome and demonstrate that while DNA methylation states are tightly maintained between genetically identical and related individuals, there remains considerable epigenetic variation that may contribute to disease susceptibility

    Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Get PDF
    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase
    corecore