161 research outputs found

    Reducing Obesity Risks During Childhood: The Role of Public and Private Health Insurance

    Get PDF
    In a widely publicized decision issued in 2004, the United States Department of Health and Human Services removed language from the Medicare Coverage Issues Manual which stated that obesity is not an illness, a pronouncement that paves the way for Medicare coverage of evidence-based obesity treatments. This determination by HHS also has important implications for public and private insurance coverage of health care services and interventions that have the potential to reduce the risk of lifelong obesity in children. This Report assesses the implications of the 2004 HHS obesity ruling into the context of public and private health insurance for children. It begins with an overview of what is known about obesity risk in childhood, as well as its short-term and long-term health consequences and then reviews the evidence of effective health interventions for children at risk. The Report then considers the implications of the 2004 decision for private health insurance coverage for children, followed by a more extended discussion of its implications for children covered under Medicaid and the State Children\u27s Health Insurance Program (SCHIP). The Report concludes with a discussion of strategies for engaging both public and private insurers in a systematic effort to increase investment in preventive health services for children at risk of obesity

    Detection of Planetary and Stellar Companions to Neighboring Stars via a Combination of Radial Velocity and Direct Imaging Techniques

    Get PDF
    13 pages, 6 figures, 4 tables, accepted for publication in the Astronomical Journal (submitted 25 Feb 2019; accepted 28 April 2019). Machine readable tables and Posteriors from the RadVel fits are available here: http://stephenkane.net/rvfits.tarThe sensitivities of radial velocity (RV) surveys for exoplanet detection are extending to increasingly longer orbital periods, where companions with periods of several years are now being regularly discovered. Companions with orbital periods that exceed the duration of the survey manifest in the data as an incomplete orbit or linear trend, a feature that can either present as the sole detectable companion to the host star, or as an additional signal overlain on the signatures of previously discovered companion(s). A diagnostic that can confirm or constrain scenarios in which the trend is caused by an unseen stellar rather than planetary companion is the use of high-contrast imaging observations. Here, we present RV data from the Anglo-Australian Planet Search (AAPS) for 20 stars that show evidence of orbiting companions. Of these, six companions have resolved orbits, with three that lie in the planetary regime. Two of these (HD 92987b and HD 221420b) are new discoveries. Follow-up observations using the Differential Speckle Survey Instrument (DSSI) on the Gemini South telescope revealed that 5 of the 20 monitored companions are likely stellar in nature. We use the sensitivity of the AAPS and DSSI data to place constraints on the mass of the companions for the remaining systems. Our analysis shows that a planetary-mass companion provides the most likely self-consistent explanation of the data for many of the remaining systems.Peer reviewedFinal Accepted Versio

    Capsule carbohydrate structure determines virulence in Acinetobacter baumannii

    Get PDF
    Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen for which novel therapeutic approaches are needed. Unfortunately, the drivers of virulence in A. baumannii remain uncertain. By comparing genomes among a panel of A. baumannii strains we identified a specific gene variation in the capsule locus that correlated with altered virulence. While less virulent strains possessed the intact gene gtr6, a hypervirulent clinical isolate contained a spontaneous transposon insertion in the same gene, resulting in the loss of a branchpoint in capsular carbohydrate structure. By constructing isogenic gtr6 mutants, we confirmed that gtr6-disrupted strains were protected from phagocytosis in vitro and displayed higher bacterial burden and lethality in vivo. Gtr6+ strains were phagocytized more readily and caused lower bacterial burden and no clinical illness in vivo. We found that the CR3 receptor mediated phagocytosis of gtr6+, but not gtr6-, strains in a complement-dependent manner. Furthermore, hypovirulent gtr6+ strains demonstrated increased virulence in vivo when CR3 function was abrogated. In summary, loss-of-function in a single capsule assembly gene dramatically altered virulence by inhibiting complement deposition and recognition by phagocytes across multiple A. baumannii strains. Thus, capsular structure can determine virulence among A. baumannii strains by altering bacterial interactions with host complement-mediated opsonophagocytosis

    The HIPASS Catalogue - II. Completeness, Reliability, and Parameter Accuracy

    Full text link
    The HI Parkes All Sky Survey (HIPASS) is a blind extragalactic HI 21-cm emission line survey covering the whole southern sky from declination -90 to +25. The HIPASS catalogue (HICAT), containing 4315 HI-selected galaxies from the region south of declination +2, is presented in Meyer et al. (2004a, Paper I). This paper describes in detail the completeness and reliability of HICAT, which are calculated from the recovery rate of synthetic sources and follow-up observations, respectively. HICAT is found to be 99 per cent complete at a peak flux of 84 mJy and an integrated flux of 9.4 Jy km/s. The overall reliability is 95 per cent, but rises to 99 per cent for sources with peak fluxes >58 mJy or integrated flux > 8.2 Jy km/s. Expressions are derived for the uncertainties on the most important HICAT parameters: peak flux, integrated flux, velocity width, and recessional velocity. The errors on HICAT parameters are dominated by the noise in the HIPASS data, rather than by the parametrization procedure.Comment: Accepted for publication in MNRAS. 12 pages, 11 figures. Paper with higher resolution figures can be downloaded from http://hipass.aus-vo.or

    Evidence for Reflected Light from the Most Eccentric Exoplanet Known

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.3847/0004-637X/821/1/65.Planets in highly eccentric orbits form a class of objects not seen within our solar system. The most extreme case known among these objects is the planet orbiting HD20782, with an orbital period of 597days and an eccentricity of 0.96. Here we present new data and analysis for this system as part of the Transit Ephemeris Refinement and Monitoring Survey. We obtained CHIRON spectra to perform an independent estimation of the fundamental stellar parameters. New radial velocities from Anglo-Australian Telescope and PARAS observations during periastron passage greatly improve our knowledge of the eccentric nature of the orbit. The combined analysis of our Keplerian orbital and Hipparcos astrometry show that the inclination of the planetary orbit is >1.22, ruling out stellar masses for the companion. Our long-term robotic photometry show that the star is extremely stable over long timescales. Photometric monitoring of the star during predicted transit and periastron times using Microvariability and Oscillations of STars rule out a transit of the planet and reveal evidence of phase variations during periastron. These possible photometric phase variations may be caused by reflected light from the planet’s atmosphere and the dramatic change in star–planet separation surrounding the periastron passage.Peer reviewedFinal Accepted Versio

    A Neptune-mass Planet Orbiting the Nearby G Dwarf HD16417

    Get PDF
    Precision Doppler measurements from an intensive 48 night "Rocky Planet Search" observing campaign on the Anglo-Australian Telescope (AAT) have revealed the presence of a low-mass exoplanet orbiting the G1 dwarf HD16417. Subsequent Doppler observations with the AAT, as well as independent observations obtained by the Keck Planet Search, have confirmed this initial detection and refine the orbital parameters to period 17.24+/-0.01 d, eccentricity 0.20+/-0.09, orbital semi-major axis 0.14+/-0.01 AU and minimum planet mass 22.1+/-2.0 Mearth. HD 16417 raises the number of published exoplanets with minimum masses of less than 25 Mearth to eighteen. Interestingly, the distribution of detected sub-25 Mearth planets over the spectral types G, K and M is almost uniform. The detection of HD 16417b by an intensive observing campaign clearly demonstrates the need for extended and contiguous observing campaigns when aiming to detect low-amplitude Doppler planets in short period orbits. Perhaps most critically it demonstrates that the search for low-mass Doppler planets will eventually require these traditional "bright-time" projects to extend throughout dark lunations.Comment: To appear in Ap

    Evidence for reflected light from the most eccentric exoplanet known

    Get PDF
    Planets in highly eccentric orbits form a class of objects not seen within our Solar System. The most extreme case known amongst these objects is the planet orbiting HD 20782, with an orbital period of 597 days and an eccentricity of 0.96. Here we present new data and analysis for this system as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS). We obtained CHIRON spectra to perform an independent estimation of the fundamental stellar parameters. New radial velocities from AAT and PARAS observations during periastron passage greatly improve the our knowledge of the eccentric nature of the orbit. The combined analysis of our Keplerian orbital and Hipparcos astrometry show that the inclination of the planetary orbit is > 1.25 degrees, ruling out stellar masses for the companion. Our long-term robotic photometry show that the star is extremely stable over long timescales. Photometric monitoring of the star during predicted transit and periastron times using MOST rule out a transit of the planet and reveal evidence of phase variations during periastron. These possible photometric phase variations are likely caused by reflected light from the planet's atmosphere and the dramatic change in star--planet separation surrounding the periastron passage

    High-angle wave instability and emergent shoreline shapes : 2. Wave climate analysis and comparisons to nature

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): F04012, doi:10.1029/2005JF000423.Recent research has revealed that the plan view evolution of a coast due to gradients in alongshore sediment transport is highly dependant upon the angles at which waves approach the shore, giving rise to an instability in shoreline shape that can generate different types of naturally occurring coastal landforms, including capes, flying spits, and alongshore sand waves. This instability merely requires that alongshore sediment flux is maximized for a given deepwater wave angle, a maximum that occurs between 35° and 50° for several common alongshore sediment transport formulae. Here we introduce metrics that sum over records of wave data to quantify the long-term stability of wave climates and to investigate how wave climates change along a coast. For Long Point, a flying spit on the north shore of Lake Erie, Canada, wave climate metrics suggest that unstable waves have shaped the spit and, furthermore, that smaller-scale alongshore sand waves occur along the spit at the same locations where the wave climate becomes unstable. A shoreline aligned along the trend of the Carolina Capes, United States, would be dominated by high-angle waves; numerical simulations driven by a comparable wave climate develop a similarly shaped cuspate coast. Local wave climates along these simulated capes and the Carolina Capes show similar trends: Shoreline reorientation and shadowing from neighboring capes causes most of the coast to experience locally stable wave climates despite regional instability.This research was funded by the Andrew W. Mellon Foundation and NSF grants DEB-05-07987 and EAR-04-44792
    • 

    corecore