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Abstract

Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen for which novel

therapeutic approaches are needed. Unfortunately, the drivers of virulence in A. baumannii

remain uncertain. By comparing genomes among a panel of A. baumannii strains we identi-

fied a specific gene variation in the capsule locus that correlated with altered virulence.

While less virulent strains possessed the intact gene gtr6, a hypervirulent clinical isolate

contained a spontaneous transposon insertion in the same gene, resulting in the loss of a

branchpoint in capsular carbohydrate structure. By constructing isogenic gtr6 mutants, we

confirmed that gtr6-disrupted strains were protected from phagocytosis in vitro and dis-

played higher bacterial burden and lethality in vivo. Gtr6+ strains were phagocytized more

readily and caused lower bacterial burden and no clinical illness in vivo. We found that the

CR3 receptor mediated phagocytosis of gtr6+, but not gtr6-, strains in a complement-depen-

dent manner. Furthermore, hypovirulent gtr6+ strains demonstrated increased virulence in

vivo when CR3 function was abrogated. In summary, loss-of-function in a single capsule

assembly gene dramatically altered virulence by inhibiting complement deposition and rec-

ognition by phagocytes across multiple A. baumannii strains. Thus, capsular structure can

determine virulence among A. baumannii strains by altering bacterial interactions with host

complement-mediated opsonophagocytosis.
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Author summary

Acinetobacter baumannii is one of the most antibiotic-resistant pathogens in clinical med-

icine and is responsible for a significant number of deaths worldwide. We found that a

highly virulent strain contained a mobile piece of DNA in one of its capsule assembly

genes which rendered the gene inactive and thus removed a single sugar from the bacter-

ium’s complex outer carbohydrate capsule. When we inactivated the same gene in a non-

virulent related strain, it became virulent, and when we repaired the non-functional gene

the virulent strain became non-virulent. We then determined that this single sugar was

critical for innate immune cells to recognize and phagocytose bacteria, and that the cells

depended on the deposition of host complement proteins on the capsule to recognize the

strains with this extra sugar. This finding provides new insight into A. baumannii patho-

genesis and may inform the development of future therapies against this insidious

pathogen.

Introduction

For the past two decades, Acinetobacter baumannii clinical infections have been on the rise

due to its facile antimicrobial resistance repertoire, catapulting the organism into the public

health spotlight. Indeed, A. baumannii is now the top priority listed on the World Health

Organization list of pathogens requiring new therapeutic strategies [1]. Causing approximately

45,000 infections in the US annually (1 million worldwide), it has an abnormally high mortal-

ity rate relative to other Gram-negative species [2]. Typically acquired nosocomially, A. bau-
mannii resists desiccation, persists on surfaces, and is primarily seen in the critical care

environment where many patients experience prolonged contact with invasive medical devices

[3]. A. baumannii isolates exhibit resistance to multiple classes of antimicrobials, leaving cer-

tain strains treatable by few antimicrobial therapies and others altogether untreatable [4–6].

Together, these factors have made A. baumannii an intractable public health issue refractory to

traditional infectious disease therapies and requiring further research into its interaction with

the host immune system.

Previous work has uncovered the importance of innate immune effectors in responding to

bloodstream and pulmonary infections, specifically of macrophages, neutrophils, and comple-

ment. An antibody raised against A. baumannii exopolysaccharide capsule mediated complete

protection against a hypervirulent strain in murine models of bacteremia and aspiration pneu-

monia, with clearance occurring primarily through Fc-receptor mediated phagocytosis by

macrophages and neutrophils [7]. In untreated mice, mortality primarily occurs via TLR-4

mediated toxicity and sepsis through the release of endogenous lipopolysaccharide (LPS),

directly dependent upon bacterial density in the blood or lung [8]. A clear delineation of viru-

lence has been established by strain type, with more than 99.9% of certain less-virulent strains

being cleared by 3- to 4-log CFU/ml in blood in the first two hours, while more virulent strains

persisted or even expanded in density in the presence of fully functional innate-immune sys-

tem effectors. Triple depletion of macrophages, neutrophils, and complement induced the

conversion of a hypovirulent, rapidly-cleared strain (ATCC 17978) into a hypervirulent strain

capable of in vivo lethality similar to a hypervirulent clinical isolate (HUMC1) [7]. Thus, escape

from innate immune effectors is a key driver of A. baumannii virulence.

Capsule is a potential driver of innate immune effector evasion. For example, genetic

lesions in capsule assembly genes resulting in an acapsular phenotype typically result in

absence of strain virulence in vivo [9,10]. Furthermore, sub-inhibitory concentrations of
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chloramphenicol increase capsule thickness in A. baumannii, and increase both virulence and

resistance to innate immune killing [11]. Nevertheless, both virulent and avirulent strains can

have a functioning capsule [2], suggesting that variations in capsule structures, rather than

presence or absence of capsule alone, may drive strain virulence. Here we present a mechanis-

tic link between capsule structure and A. baumannii virulence using a strain collection of clini-

cal isolates with well-defined capsule loci.

Results

Capsule genetic locus and carbohydrate structure

We previously defined the in vivo virulence of several A. baumannii clinical isolates [7,8,12].

After sequencing these strains we identified several with defined and relatively conserved [13]

capsule loci genetic elements and highly variable virulence [2] through analysis with the Basic

Local Alignment Search Tool (BLAST) (Table 1). A. baumannii HUMC1, a hypervirulent clin-

ical blood and lung isolate, contains a KL22-type capsule locus type per the Kenyon classifica-

tion [13]. ATCC 17978, a lab-adapted avirulent reference strain originally isolated from

cerebrospinal fluid more than 50 years ago, is a KL3-type strain. Only two differences were

found in the capsule loci of these strains, which exhibit vastly different in vivo virulence [14].

First was the presence of an extra gene (pgt1) near the end of the capsule locus in the KL22

type strain (HUMC1), and not in the KL3 strain (ATCC 17978). Second was a transposon

insertion near the end of the gtr6 coding region resulting in a truncated mRNA sequence in

the hypervirulent strain, HUMC1 (Fig 1A). BLAST analysis of the gtr6 insertion revealed it to

be already classified as ISAba13, belonging to Insertion Family 5 and Group 903, and present

in over 50 strains of A. baumannii, some of which were confirmed to be clinical isolates.

When these two differences between HUMC1 and ATCC 17978 capsule loci were evaluated

in other KL22- and KL3-type strains, we found that strains with intact gtr6 genes were readily

phagocytosed [12] (Table 1). In contrast, pgt1 was present in strains that had both low uptake

(HUMC1) and high uptake (15827 and NIH1), and could therefore not be principally respon-

sible for phagocytic phenotype.

Translated BLAST analysis predicted the gtr6 gene to most likely be a glycosyltransferase

and pgt1 to be a phosphoglycerol transferase or sulfatase. After extraction and purification of

HUMC1, ATCC 17978, and 15827 capsular polysaccharides, proton nuclear magnetic reso-

nance (1H-NMR) and two-dimensional NMR spectra were obtained for each strain to deter-

mine their structural configuration. All strains shared a core structure composed of a

repeating subunit of α-D-galactose, β-D-glucose, and N-acetyl-β-D-galactosamine (Residues B,

C, and D in Fig 1B). They also contained a single N-acetyl-β-D-glucosamine side chain

Table 1. Strains by Locus Classification, Genotype, and Phagocytosis Phenotype. All strains used in this study are described according to Kenyon classification capsule

assembly locus type, genotype by gtr6 and pgt1, and relative phagocytic potential.:: = chromosomal gene insertion, / = plasmid insertion, � = generated mutant.

Strain Locus Type gtr6 pgt1 Phagocytosis

HUMC1 KL22 - + Low

NIH1 KL22 + + High

15827 KL22 + + High

ATCC 17978 KL3 + - High

ATCC 17978 Δgtr6� KL3 - - Low

ATCC 17978 Δgtr6/pSC1a� KL3 + - High

NIH1 Δgtr6� KL22 - - Low

HUMC1::gtr6� KL22 + + High

https://doi.org/10.1371/journal.ppat.1009291.t001
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branching off of Residue B that was differentially acetylated (Residue A), with 50% overall acet-

ylation in pgt1- strains (ATCC 17978) versus 90% acetylation in pgt1+ strains (HUMC1 and

15827). Strains with intact gtr6 (ATCC 17978 and 15827) had an additional single sugar resi-

due consisting of an N-acetyl-β-D-glucosamine (Residue E) branching off of Residue B. This

residue was absent in the HUMC1 strain, which has a spontaneously disrupted gtr6 gene, sug-

gesting that the disruption or absence of gtr6 led to loss of Residue E.

Construction and comparison of isogenic strain pairs

To better understand the role of gtr6 in virulence, we created a series of isogenic strain pairs

and compared them for virulence in vitro and in vivo. Specifically, we disrupted gtr6 in ATCC

17978 and NIH1; created a revertant strain of the gtr6-disrupted ATCC 17978 mutant by

Fig 1. Capsular gene loci for A. baumannii KL3 and KL22 and capsular carbohydrate composition and linkage of KL22, and KL3 capsule locus strains. (A)

Whole-genome sequencing of HUMC1 (a hypervirulent strain), 15827 (a hypovirulent strain) and ATCC 17978 (an avirulent strain) revealed distinct capsule loci

organized into KL22 (HUMC1 and 15827) and KL3 (ATCC 17978) groups. KL22 differs from KL3 in that it contains an extra acetyltransferase gene pgt1, while

HUMC1 (KL22) contains a transposon insertion sequence disruption in the coding region of the glycotransferase gtr6 (downward black arrow). We then disrupted the

gtr6 gene in ATCC 17978 through the insertion of an antibiotic resistance cassette in its coding (upward black arrow), and then by replacing the entire gene with a

defective copy from HUMC1. (B) (Top) Structural analysis of hypervirulent HUMC1 and the ATCC 17978 Δgtr6 mutant (KL3) revealed differential levels of

acetylation at the A4 position marked in grey highlight (90% for pgt1+ HUMC1 and 50% for pgt1- ATCC 17978 Δgtr6). The two strains are isogenic at the capsule locus

save for pgt1. (Bottom) Structural analysis of avirulent ATCC 17978 and hypovirulent 15827 (KL22) revealed the same pgt1-mediated difference in acetylation as well

as an additional GlcNAc branch at position B (grey rectangle). Both KL22 and KL3 loci have a functioning gtr6 gene.

https://doi.org/10.1371/journal.ppat.1009291.g001
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transforming it with a functioning gtr6-containing plasmid; and repaired the spontaneous

transposon disruption of gtr6 in HUMC1 with a functional copy from ATCC 17978. Capsule

carbohydrate analysis of ATCC 17978 Δgtr6 revealed the loss of the N-acetyl-β-D-glucosamine

residue seen in the wild type strain (residue E above) as well as the retention of 50% acetylation

of residue A consistent with the absence of a pgt1 gene in the mutant strain.

As previously published, HUMC1 is intrinsically resistant to phagocytosis by neutrophils

and macrophages, resulting in increased virulence in intravenous and intratracheal mouse

infection models [14]. As for ATCC 17978 and NIH1, newly constructed strains with dis-

rupted gtr6 exhibited similar degrees of marked reduction in phagocytic uptake compared to

their isogenic strains with intact gtr6 (Fig 2A). In contrast, HUMC1 with repaired gtr6 exhib-

ited markedly increased uptake similar to all other strains with intact gtr6 (Fig 2B). Represen-

tative micrograph images of RAW 264.7 bacterial uptake are reproduced in Fig 2E.

Fig 2. Macrophage phagocytosis of ATCC 17978 Δgtr6, NIH1 Δgtr6, and HUMC1::gtr6, gentamycin protection assay, and representative micrographs.

(2A) RAW 264.7 cells were co-incubated with NIH1 (left) and ATCC 17978 (right) isogenic wild-type strains and Δgtr6 mutants. (2B) RAW 264.7 cells were co-

incubated with ATCC 17978, the HUMC1::gtr6 mutant strain with repaired gtr6, or wild-type HUMC1. (2C) RAW 264.7 cells were co-incubated with ATCC

17978 wild type, Δgtr6, Δgtr6/pSC1a (the knockout mutant with a plasmid-borne functional copy) in the presence of complement-active serum, and Δgtr6/pSC1a

in the presence of heat-inactivated serum. �p< 0.001. (2D) Gentamicin protection assay with RAW 264.7 cells and wild-type ATCC 17978 (black bars) or ATCC

17978 Δgtr6 (white bars). Cytochalasin D was added as an inhibitor of phagocytosis. Total bacteria plated for CFUs and expressed as a proportion of initial

bacterial inoculum. � = significant vs. bacteria-only group,

y

= significant vs. bacteria + RAW 264.7 cell group. �,

y

= p< 0.01 (2E) RAW 264.7 cells were

incubated with ATCC 17978, HUMC1, ATCC 17978 Δgtr6, and HUMC1::gtr6. Stained with Wright-Giemsa stain, total magnification is 1000x. Results are from

two repeat experiments with duplicate samples in each. White arrows denote adherent or internalized bacteria.

https://doi.org/10.1371/journal.ppat.1009291.g002
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Additionally, rescue of the ATCC 17978 Δgtr6 mutant with a gtr6-containing plasmid restored

phagocytic uptake (Fig 2C). RNA sequencing analysis of wild-type HUMC1 and HUMC1::

gtr6 revealed no differential gene expression outside of the capsule locus (S1A Fig).

Bacterial internalization following adhesion was additionally confirmed through gentami-

cin protection assays using ATCC 17978 WT and ATCC 17978 Δgtr6 (Fig 2D). Specifically,

gentamicin completely sterilized ATCC 17978 WT and Δgtr6, but was prevented from doing

so when macrophages were co-cultured with the gtr6+ strain but not the Δgtr6 mutant, indi-

cating macrophage uptake of the gtr6+ strain (as gentamicin is active extracellularly but cannot

reach bacteria inside macrophages). Furthermore, cytocholasin D, which abrogates phagocyto-

sis, prevented macrophages from reducing gtr6+ bacterial burden in culture and also pre-

vented macrophages from protecting gtr6+ bacteria from gentamicin-mediated sterilization.

When tested in vivo using a bacteremia mouse model, strains with disrupted gtr6 resulted

in markedly higher blood bacterial burden at 1-hour post-infection than those with intact gtr6
(Fig 3A). We next compared the virulence of isogenic strain pairs in vivo and found that all

Fig 3. Bacterial blood burden and in vivo lethality by gtr6 genotype. (3A) Bacterial burden in the blood at 1-hour post-infection with 1.0 ×108 CFUs of

ATCC 17978 WT and Δgtr6 (left) and NIH1 WT and Δgtr6 (right). �p< 0.001 (3B) C3HeB/Fe mice were infected intravenously with 2.4×108 CFUs of

ATCC 17978 (black squares), 8.3 ×107 CFUs of ATCC 17978 Δgtr6 (white squares), 1.0 ×108 CFUs of NIH1 (black circles) and NIH1 Δgtr6 (white circles),

2.9 ×107 CFU of HUMC1 (black triangles), and 2.0 ×108 CFUs of HUMC1::gtr6 (white triangles). �p< 0.05, ��p< 0.01. Wide bars denote median, error

bars denote IQR. Experiments repeated once, n = 5 per group for in vivo.

https://doi.org/10.1371/journal.ppat.1009291.g003
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strains with disrupted gtr6 (ATCC 17978 Δgtr6, NIH1 Δgtr6, and HUMC1) were hypervirulent

while all strains with intact gtr6 (ATCC 17978, NIH1) were non-lethal (Fig 3B). Most notably,

the gtr6-repaired mutant (HUMC1::gtr6) lost its virulence and was non-lethal at a 10-fold

higher dose than the LD100 of wild type HUMC1 (Fig 3B).

Mechanism of altered capsule structure on phagocytosis

Having established that gtr6 disruption abrogates A. baumannii adhesion and subsequent

phagocytosis in vitro and diminishes clearance and survivability in vivo, we next sought to

determine how the capsule structure change mediated this effect.

We first verified that gtr6 did not affect capsule abundance by quantitatively measuring

total carbohydrate content in capsule extracts (Fig 4A). We subsequently sought to determine

whether the gtr6-disrupted capsule actively inhibited phagocytosis or, conversely, gtr6-intact

capsule promoted phagocytosis. We conducted mixed phagocytosis assays in which soluble

Fig 4. Quantification of capsule content, pre-incubation of phagocytes with purified bacterial capsule, and pre-incubation of phagocytes with soluble

carbohydrates. (4A) 2.0×108 CFU of ATCC 1778 and HUMC1 had total capsule carbohydrate capsule extracted in parallel and total carbohydrate content

measured via phenol-sulfuric acid colorimetry. (4B) Incubation of macrophages and bacteria with purified capsule from gtr6+ (ATCC 17978, 15827) and gtr6-

(HUMC1, ATCC 17978 Δgtr6) strains. Extract-free uptake was used as a control. �p< 0.0001 (4C) RAW 264.7 cells were pre-incubated with soluble mannan

(0.5mg/mL), laminarin (0.5mg/mL), and dextran sulfate (0.1mg/mL) or an untreated control prior to co-incubation with ATCC 17978. �p< 0.0001. Two

biological replicates for in vitro. Wide bars denote median, error bars denote IQR.

https://doi.org/10.1371/journal.ppat.1009291.g004
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capsule was extracted from strains and added to macrophage cultures in the presence of viable

bacteria. We found that capsule extracted from gtr6-intact strains inhibited uptake of ATCC

17978 whereas capsule from gtr6-disrupted strains did not alter uptake of bacteria (Fig 4B).

Thus, rather than actively inhibiting uptake, gtr6-disrupted strains produce a capsule structure

that is unrecognizable by phagocytic receptors while not altering capsule abundance.

We next sought to identify which receptors were driving adhesion and phagocytosis of

gtr6-intact strains. By pre-incubating macrophages with various carbohydrate targets of

phagocytic receptors, we found that laminarin—but not mannan or dextran sulfate—inhibited

the uptake of the normally highly phagocytosed strain ATCC 17978 (Fig 4C).

Given that laminarin blocked phagocytosis of ATCC 17978 we next sought to block the

known phagocytic receptors of laminarin using neutralizing monoclonal antibodies. Lami-

narin, a branched 1,3- and 1,6-linked β-glucan fungal sugar, is known to bind a number of

mammalian C-type lectins including Dectin-1 and Complement Receptor 3 (CR3) [15]. We

next performed phagocytosis assays with macrophages, gtr6-intact ATCC 17978, and neutral-

izing antibodies to identify which receptor interacted with capsular carbohydrate from gtr6-

intact strains: anti-CR3 antibodies considerably decreased phagocytic uptake, anti-Dectin-1

antibodies modestly but statistically significantly decreased phagocytic uptake, and no decrease

in phagocytosis was seen with anti-Mannose Receptor (MR) consistent with unaltered uptake

upon pre-incubation with soluble mannan (Fig 5A).

To verify the involvement of CR3 in recognition of ATCC 17978, we knocked down CR3

and Dectin-1 mRNA in RAW 264.7 cells by siRNA transfection followed by phagocytosis

assays. Consistent with prior siRNA results in this cell line [16], siRNA knockdown of CR3

resulted in a 50–75% receptor knockdown efficiency via ΔΔCt RT-qPCR (S1B Fig). Mimicking

the effect of neutralizing antibodies, macrophages transfected with anti-CR3 siRNA showed a

significant decrease in uptake of ATCC 17978, with a non-significant decrease in Dectin-1 and

no additive effects with a dual Dectin-1/CR3 knockdown (Fig 5B).

Phagocytosis assays using peritoneal macrophages from Dectin-1- and CR3-knockout

(KO) mice via 72-hour elicitation with Brewer thioglycolate medium yielded similar results.

Specifically, CR3 null macrophages mediated drastically less uptake than macrophages from

wild type or Dectin-1 KO animals (Fig 5C). Shorter duration (24-hour) thioglycolate elicita-

tion yielding peritoneal neutrophils showed genotypically similar results to macrophages (Fig

5D), and heat inactivation of complement by heating at 56˚C for 30 minutes completely abro-

gated uptake in primary peritoneal neutrophils and RAW 264.7 macrophages (Fig 5D and

5E).

The role of complement in mediating virulence

The dependence of phagocytes on CR3 and complement-active serum to uptake gtr6-intact

strains suggested that complement deposition of iC3b is a primary driver of bacterial clear-

ance. CR3 consists of both a complement-recognizing protein-binding domain and a carbohy-

drate-recognizing lectin domain [17], so we next sought to rule out any redundant effects

between the two. To this end, we first antagonized the lectin-binding domain by pre-incubat-

ing macrophages with an inhibitory concentration [18] of soluble N-acetyl-D-glucosamine.

Blockade of the CR3 lectin-binding domain in this manner did not alter uptake of bacteria in

the presence of complement-active serum (Fig 6A). Serially diluting complement active serum

demonstrated the dependence of macrophages on complement to uptake gtr6-intact ATCC

17978, with a significant loss of uptake occurring at ultra-low concentrations of complement

of ≲1% (Fig 6B). Thus, even low amounts of complement were sufficient to drive CR3-me-

diated uptake of A. baumannii.
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Fig 5. Receptor blockade with siRNA knockdown, antibody neutralization of beta-glucan receptors prior to bacterial uptake, and phagocytosis of

bacteria by peritoneal macrophages and neutrophils. (5A) RAW 264.7 cells were pre-incubated with anti-Dectin-1, anti-CR3, anti-MR neutralizing

monoclonal antibodies or an isotype control prior to co-incubation with ATCC 17978. �p< 0.0005, ��p< 0.0001 (5B) Knockdown of Dectin-1 and/or CR3 in

RAW 264.7 cells followed by incubation with ATCC 17978. �p< 0.0001 (5C) Primary peritoneally-elicited macrophages from C57BL/6 mice followed by

phagocytosis assays with ATCC 17978. �p< 0.05, ��p< 0.0001 (5D) Phagocytosis assays of ATCC 17978 with peritoneal neutrophils from wild-type mice with

PLOS PATHOGENS Capsule carbohydrate structure determines virulence in Acinetobacter baumannii

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009291 February 2, 2021 9 / 24

https://doi.org/10.1371/journal.ppat.1009291


To establish the ability of complement to rescue mice from A. baumannii infection, we

compared the concentrations of lethal inocula across strains in a murine bacteremia model,

with mice depleted of complement using cobra venom factor (CVF) [19]. We previously

found that A. baumannii strain 15827 was nonlethal at an inoculum of 2×108 CFU whereas

HUMC1—which has an identical KL22 capsule locus except for the gtr6 disruption—was

100% lethal at an inoculum 10-fold lower [12]. 15827 also became highly lethal in mice

depleted of complement relative to fully functional controls (Fig 6C).

disruption of phagocytosis upon the addition of heat-inactivated serum (HI-S) or complement-active serum (CA-S). �p< 0.0001 (5E) Phagocytosis assays with

RAW 264.7 macrophages with gtr6+ and capsule-free strains (ATCC 17978 WT, 15827, ATCC 17978 ΔitrA), and gtr6- strains (ATCC 17978 Δgtr6, HUMC1),

with complement active (CA-S) or heat-inactivated (HI-S) serum. �p< 0.0001. Experiments repeated once with two biological replicates. Wide bars denote

median, error bars denote IQR.

https://doi.org/10.1371/journal.ppat.1009291.g005

Fig 6. Phagocytosis in the presence of a lectin domain inhibitor, phagocytosis by macrophages in serially diluted serum, and infection of complement-

depleted mice. (6A) Incubation of RAW 264.7 cells with ATCC 17978 in the presence of 100μg/mL GlcNAc (NAG), a CR3 lectin domain inhibitor. (6B) Serial

two-fold dilutions of complement-active mouse serum in a RAW 264.7 cell phagocytosis assay with ATCC 17978. �p< 0.0001 (6C) Male C57BL/6 mice aged 10

weeks were infected intravenously with 2.0×108 CFUs of 15827, with or without administration of 15μg cobra venom factor (CVF) 48 h prior to infection. �p<
0.001. Experiments repeated once, n = 5 per group for in vivo and two technical replicates for in vitro.

https://doi.org/10.1371/journal.ppat.1009291.g006
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This led us to evaluate complement deposition on the bacterial surface. We first incubated

bacterial strains with complement-active serum, followed by anti-C3b antibodies, and finally a

fluorescent secondary antibody (Fig 7A, 7B and 7C). Flow cytometry revealed that C3b bound

>40% of the gtr6+ ATCC 17978, >95% of an acapsular mutant (ATCC 17978 ΔitrA), and was

almost undetectable on the gtr6− strain (ATCC 17978 Δgtr6). Complement binding to other

hypovirulent strains (15827, AB0057, AB0071) was considerably lower (2–5% events bound by

C3b), but still 5- to 10-fold higher than the panel of hypervirulent strains (HUMC4, HUMC5,

HUMC1, LAC4) which were nearly imperceptible (�1% events bound by C3b). Thus, a small

amount of complement deposition on the bacterial surface is sufficient to mediate phagocytic

uptake in vitro. The role of C3 and C5 in phagocytosis were established via macrophage uptake

assays of the strain panel in serum selectively depleted of C3 as well as C3/C5 in combination,

as well as in entirely serum-free conditions. The presence of C3 was uniformly requisite for

uptake (S1C Fig).

Fig 7. Flow cytometry of strains incubated with serum and anti-C3b antibodies. (7A) Flow cytometry of bacteria following incubation in 10% complement active

serum followed by anti-C3b antibodies. Strains denoted by known virulence (brackets) as well as gtr6 phenotype (upward arrows). p< 0.0001. (7B) Representative flow

plot of initial forward and side scatter plot and sub-gating on single bacterial cells with FITC-A as the anti-C3b fluorophore. (7C) Representative histograms of anti-C3b

fluorescent bacteria for HUMC1 (hypervirulent), 15827 (hypovirulent), ATCC 17978 ΔitrA (avirulent), and the isotype control. 20,000 events collected per condition

for flow cytometry, gated for singlets via FSC/SSC, fluorescence gate set to exclude 99% of isotype control and copied across samples ran in parallel.

https://doi.org/10.1371/journal.ppat.1009291.g007
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Discussion

We have identified a single glycosyltransferase gene in the capsule locus that was capable of

significantly modifying virulence in A. baumannii. A single β-D-GlcpNAc side chain alteration

in the capsule dictated a hypovirulent versus hypervirulent phenotype in both wild-type and

generated mutant strains. Strains lacking this key residue could not be readily phagocytized by

innate immune effectors in vitro, nor be effectively cleared in vivo, and thus resulted in lethal

infection. Conversely, strains possessing the gtr6-encoded capsular carbohydrate branch-point

were readily adherent to immune cells, were phagocytosed, and were nonlethal in vivo.

Inserting both the transposon-disrupted HUMC1-derived gtr6 gene as well as full disrup-

tion through replacement with an antibiotic cassette resulted in lack of phagocytosis and

increased virulence, suggesting that the transposon insertion near the terminal coding region

of gtr6 in HUMC1 resulted in a complete functional knockout of the gene. Rescue of the

ATCC 17978 Δgtr6 mutant with a gtr6-containing plasmid reverted the phagocytosis pheno-

type, confirming that gtr6 function, rather than polar effects of gene editing, were responsible

for the phagocytosis phenotype seen in the generated mutants. RNA sequencing of the gtr6-

disrupted wild type HUMC1 as well as the gtr6+ HUMC1::gtr6 rescue strain confirmed that

the addition of gtr6 did not change the expression levels of any genes outside of the capsule

locus.

These results follow the molecular Koch’s postulates modified for loss-of-function driving

virulence [20], indicating that the bacterial capsule is a primary driver of virulence, as demon-

strated across multiple clinical isolates and isogenic strain pairs. BLAST analysis confirmed

that this insertion element has previously been characterized as ISAba13 and is present in a

variety of A. baumannii clinical isolates, and other work confirms that frequent transposon-

mediated disruption of genes contributes significantly to A. baumannii virulence in the form

of outer molecule structural variation [21], metabolic function, and antimicrobial resistance

[22,23].

One limitation of the data is that we cannot definitively distinguish which step in phagocy-

tosis is altered by the gtr6 gene. However, it is likely that capsular alteration affects adhesion,

which is the first step in the phagocytosis cascade. The ATCC 17978 Δgtr6 mutant showed

almost identical CFU levels in the bacteria-only and bacteria plus macrophage groups com-

pared to a decrease in the bacteria plus macrophage group with wild type ATCC 17978, sug-

gesting that the entire Δgtr6 bacterial inoculum was present in the assay supernatant upon

plating with no bacteria adherent to or sequestrated in the RAW 264.7 cells. Likewise, the addi-

tion of cytochalasin D to gentamicin-containing wells did not alter gentamicin’s effect on

CFUs with the Δgtr6 strain. This result suggests that gentamicin protection is mediated

upstream of the cytochalasin target in the assay, which is actin-polymerization mediated

phagocytosis, after adhesion had already occurred.

Multiple lines of evidence indicated CR3 as the primary receptor mediating uptake via com-

plement deposited on the bacterial surface. As CR3 contains both a C-type lectin-binding

domain that recognizes carbohydrates and a protein-binding domain that recognizes inacti-

vated (but bound) complement factor 3b (iC3b) [24], both could have played a role in the rec-

ognition of A. baumannii [25]. However, heat-inactivating serum completely blocked bacterial

uptake by both macrophages and neutrophils while incubation with a CR3 lectin domain

inhibitor did not, indicating that in vitro phagocytosis by CR3 depended entirely on bound

complement recognition by two innate immune effector cell types. Furthermore, serially dilut-

ing the serum present in macrophage uptake assays decreased bacterial uptake only at ≲1%

serum. Thus, only a small amount of capsule-bound complement was necessary for recogni-

tion and phagocytosis. Selective depletion of C3 additionally prevented uptake as did entirely
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serum-free conditions. Furthermore, capsule structure drove complement deposition. Specifi-

cally, an acapsular ΔitrA mutant strain was virtually saturated via complement binding on its

surface, hypovirulent strains with intact gtr6 exhibited intermediate complement binding, and

hypervirulent, gtr6-deficient strains (HUMC1 and ATCC 17978 Δgtr6) had very little C3b

bound (�1% events), commensurate with their resistance to phagocytosis and clearance from

the blood.

Interestingly, the gtr6+/pgt1+ strain (15827) showed moderate levels of C3b binding (~5%

events), less bound C3b than the gtr6+/pgt1− strain (ATCC 17978). These results suggested

that pgt1 may play a small role in protecting bacteria from complement opsonization, though

insufficient for increasing strain virulence on its own. Previous work has described surface

charge as being important in both promoting and inhibiting complement deposition on bacte-

rial and artificial surfaces [26,27], and the higher acetylation in pgt1+ strains may be minimally

protective against complement deposition via this model by having an overall higher negative

surface charge than pgt1- strains. The specific pathway by which pgt1 differentially acetylates

capsule remains unknown, as its predicted function as a phosphoglycerol transferase or sulfa-

tase is not reflected in the KL22 structure. However, inconsistencies between its presence in

the capsule locus and capsule structure have been described previously [28,29].

The gna gene, present in multiple strains including KL3 and KL22, is most likely responsi-

ble for the synthesis of GlcpNAcA from GlcpNAc while dgaA, dgaB, and dgaC (annotated as

mnnA-C elsewhere) are responsible for the synthesis of GlcpNAc3NAcA [28], a modified side

chain of which is present in both KL3 and KL22 but does not seem play a principal role in

innate immune recognition given that both ATCC 17978 and HUMC1 contain this residue in

their capsule structures (although its differential acetylation may play a minimal role as dis-

cussed above). Notably, the hypervirulent clinical isolate LAC-4, which showed almost no

complement deposition in our binding assay, has had its capsule structure characterized as

KL49 [29], is entirely free of branch points, and consists of repeating subunits of α-FucNAc, α-

D-GlcpNAc, and 8eLeg5Ac7Ac [30]. While containing a number of insertion sequences that

potentially contribute to virulence [31], the LAC-4 capsule locus is free of insertion elements

unlike HUMC1.

In conclusion, virulence across multiple strains of A. baumannii is driven primarily by

interactions between bacterial capsule and distinct host innate effectors. Specifically, comple-

ment plays an integral role in coordinating phagocytosis, with its degree of deposition varying

based on capsular polysaccharide structure, as mediated by the functionality of a capsule

assembly gene. Capsule changes that preclude complement deposition markedly decreased

phagocytic uptake via the protein-binding domain of the CR3 receptor, preventing bacterial

clearance and leading to host death. We did not identify other receptors on host cells that were

functionally redundant with CR3. However, Dectin-1 may play a minor role in host uptake of

bacteria consistent with previous studies examining the relative contributions of CR3 and Dec-

tin-1 in the uptake of glucan-bearing particles [15,32,33].

Capsule is thus a major virulence factor for A. baumannii, but a variety of other factors

have been implicated in virulence as well [2,34,35]. While the intravenous bloodstream infec-

tion model mimics the second most common clinical manifestation of A. baumannii (bacter-

emia) [2], it is not necessarily safe to extrapolate to other disease settings (e.g., pneumonia,

wound infections, urinary tract infections), which may involve innate immune effectors that

differ significantly from those present in the bloodstream. However, we have found that anti-

capsular monoclonal antibody therapy is protective during pneumonia, suggesting capsule

does play a major role in pathogenesis during lung infection [7].

In summary, these results indicate that anti-virulence strategies specifically targeting the A.

baumannii capsule or promoting complement deposition on bacteria (for example by
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antibody-based therapy) are promising means to prevent or treat serious infections caused by

this deadly pathogen. Future work should determine how prevalent disruptions in gtr6, or

other capsular alterations, are in clinical isolates of A. baumannii, and whether or not gtr6-pos-

itive strains are capable of innate immune evasion through an alternative mechanism.

Materials and methods

Ethics statement

All animal work was conducted following approval (Protocol # 20750) by the Institutional Ani-

mal Care and Use Committee at the University of Southern California, in compliance with the

recommendations in the Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health. Infected mice develop weight loss, ruffled fur, poor appetite, decreased

ambulation, huddling behavior, and low body temperature. Mice were monitored at least

twice daily for seven days. Mice that displayed huddling behavior and are poorly mobile were

weighed once daily. Weight loss of greater than 15% pre-infection body weight triggered

euthanasia via CO2 chamber and secondary cervical dislocation. Soft bedding and other

enrichment devices were provided as recommended by the veterinary staff. Nutritional supple-

ments such as hydrogel packs were provided as needed.

Genome BLAST analysis

Genomes were retrieved from NCBI with the following GenBank accession numbers:

LQRQ00000000.1 (HUMC1), JMNX00000000.1 (15827), CP000521.1 (ATCC 17978),

GCA_000222225.2 (NIH1). Nucleotide BLAST comparison of their K capsule loci was per-

formed by first aligning to fkpA/lldP and ilvE/aspS genes that flank the K locus [13], and differ-

ing genes were analyzed for structural homology to known proteins using translated BLAST at

NCBI. The gtr6 transposon insertion in HUMC1 (NCBI Reference Sequence

NZ_LQRQ01000007.1, transposon gene ID: AWC45_RS01000) was entered intro PATRIC for

BLAST analysis and identified as ISAba13, belonging to Insertion Family 5 and Group 903.

Knockout mutant generation

ATCC 17978 Δgtr6 and NIH1 Δgtr6, isogenic derivatives of ATCC 17978 and NIH1 respec-

tively, were generated by allelic exchange as described previously [36,37] with the following

strain-specific selection marker and electroporation condition modifications. Electrocompe-

tent cells were grown to OD600 0.4 in lysogeny broth (LB) containing 0.12 mM Bi(NO3)3 and

2.5 mM sodium salicylate at pH 7 to decrease capsule production[38] followed by three washes

with ice-cold 10% glycerol; cells were resuspended in sterile water to 500-fold pre-wash con-

centration. Electroporation was performed at 1.8 kV, 200 O, and 25 μF in a 2-mm cuvette. As a

first step, to facilitate allelic exchange, the recombinase-containing plasmid pAT02 was intro-

duced into ATCC 17978 and NIH1 via electroporation and selection with 200 μg/mL and

500 μg/mL of carbenicillin respectively. For the subsequent generation of electrocompetent

cells containing pAT02, 2 mM IPTG and the appropriate concentration of carbenicillin were

added after an initial 45 min of growth. For the construction of ATCC 17978 Δgtr6 and NIH1

Δgtr6, a PCR-generated fragment that contained a kanamycin resistance gene flanked by the

first and last 126 bp of gtr6 was amplified and gel-purified. This fragment (7.8 μg) was electro-

porated into ATCC 17978/pAT02 or NIH1/pAT02 and recombinants were selected on LB

plates containing 40 μg/mL kanamycin. Successful gene disruption was confirmed by sequenc-

ing of PCR-generated amplicons using primers outside of the gene in question. A derivative
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cured of pAT02 was used for subsequent studies. Strains were maintained at -80˚C in 50%

glycerol-50% LB.

HUMC1 mutant generation

Strains, plasmids and growth conditions. Acinetobacter baumannii strain HUMC1 was

maintained in LB. Plasmids were maintained in Escherichia coli JM101 with requisite antibiot-

ics at concentrations as follows, unless otherwise specified: hygromycin 100 μg/mL; chloram-

phenicol 20 μg/mL; carbenicillin 100 μg/mL; tetracycline 25 μg/mL. Plasmids used for the

study are listed in S1 Text. A. baumannii HUMC1 being an XDR strain, was found to be resis-

tant to ampicillin, however it was sensitive to tetracycline at high concentration (60 μg/mL).

Construction of pAT03a. E. coli JM101 was first transformed with pSIM5 encoding the

λ-Red recombination system [37,39] and JM101/pSIM5 was further transformed with pAT03

(ampR). pAT03a possesses a gene for a site-specific recombinase (flippase) that was used

downstream to excise the hygromycin antibiotic resistance gene cassette (S2 Text) from the

recombinant clone of A. baumannii HUMC1::gtr6-hygromycin. The plasmid pAT03a (S2A

Fig) was derived from pAT03, by exchanging the ampicillin resistance gene cassette with a tet-

racycline resistance gene cassette as follows. The tetracycline resistance gene cassette was

amplified from the plasmid pBS-Tetr (S1 Text) using Q5 High-Fidelity Master Mix (NEB)

using primer sets TetF and TetR (S3 Text). The 200-μL PCR reaction contained 80 ng DNA

pBS-Tetr template and primers at 0.5 μM. The mix was divided equally into four tubes and the

amplification was done as follows: initial denaturation at 98˚C for 3 min followed by 35 cycles

of 96˚C for 10 s, 62˚C for 30 s, 72˚C for 75 s, and the final extension was done at 72˚C for 5

min. Upon confirmation on a 1% agarose gel for the presence of the expected amplicon size

(1.3 kb), the PCR product was digested with DpnI in order to remove cell-derived plasmid

template from the PCR sample. The reaction mix (230 μL) contained 195 μL PCR product,

23 μL 2× reaction buffer and three units of FastDigest DpnI (Thermo), incubated at 37˚C in a

water bath for 1 h. The PCR product was then purified by Monarch PCR & DNA Cleanup Kit

(NEB). Electrocompetent E.coli JM101/pSIM5/pAT03 were prepared by growing the strain at

30˚C to OD600 0.6–0.8 in 10 mL LB (chloramphenicol, carbenicillin). Once the OD600 was

reached, the culture was transferred to a 42˚C water bath for exactly 15 min to induce the λ-

Red recombinase in pSIM5, followed by cooling on ice for 30 min. Subsequently, 9 mL culture

was centrifuged at 8,000×g for 6 min in 1.7-mL centrifuge tubes at 4˚C. The pellet was washed

twice with 4 mL ice-cold 10% glycerol and pellets from two centrifuge tubes were combined in

400 μL ice-cold 10% glycerol. The pooled pellets were resuspended in 100 μL 10% glycerol and

stored at -80˚C. The electrocompetent cells were transformed with 500 ng linearized PCR

product using a BioRad Pulse Controller at 2.5 kV, 25 μF, and 200O. Following incubation at

30˚C for 2.5 h, 100 μL culture was plated onto LB (tetracycline) and incubated at 30˚C for up

to 48 h. Tetracycline-resistant colonies were screened for successful exchange of the ampicillin

resistance gene with the tetracycline resistance gene by PCR using primers CHCK5Tet and

CHCK3Tet (S3 Text). The colonies were grown overnight in 2.5 mL LB (tetracycline) and

1 μL culture was added to the PCR mix (25 μL; 1× Taq Frogga mix (Frogga Bio), with primers

at 0.2 μM) and the amplification was done as follows: initial denaturation at 98˚C for 3 min fol-

lowed by 25 cycles of 96˚C for 10 s, 52˚C for 30 s, 72˚C for 1 min and the final extension was

done at 72˚C for 5 min. pSIM5 was cured from the strain by two cycles of growth at 42˚C.

pAT03a was isolated using the Monarch Plasmid Miniprep Kit (NEB) and sequenced to con-

firm the fidelity of the tetracycline resistance gene.

Construction of A. baumannii HUMC1::gtr6-hygromycin. First, electrocompetent

HUMC1 was prepared as follows. Colonies from an overnight LB agar plate were mechanically
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harvested and resuspended in 1 mL of LB, 500 μL of which was inoculated into 250 mL LB

broth and incubated at 37˚C while shaking at 275 rpm. The culture was harvested at an OD600

of 0.40–0.45, distributed into two 250 mL bottles and pelleted at 8000 x g for 8 mins at 4˚C.

The pellets were resuspended in equal volumes of ice cold 10% glycerol, followed by another

wash with 70 mL of 10% glycerol. Then the two pellets were combined, washed with 50 mL of

10% glycerol and resuspended in a final volume of 500 μL of 10% glycerol. The plasmid pAT04

(500 ng) (S2B Fig), which possesses the A. baumannii recombination (RecAb) system (S1

Text), was transformed into 100 μL of HUMC1 competent cells via electroporation (Biorad

pulse controller at 1.8 kV, 25 μF, 200O). Transformed clones, (selected on LB tetracycline),

were confirmed for presence of pAT04 by colony-PCR using the primers CHCK5Tet and

CHCK3Tet as described above and verified as HUMC1/pAT04.

Next, the hygromycin resistance gene cassette with FRT sites was synthesized by Integrated

DNA Technologies. The cassette was delivered in a pUC57 background (S2C Fig). Since the

gtr6 neighborhood of A. baumannii strain 15827 has the identical sequence as that in HUMC1

and possess wild-type gtr6, purified Ab15827 DNA was used as template for amplification of

gtr6, starting from the 5’ end of the ORF up to 100 bases flanking the 3’ end.

Then, a plasmid construct (S2D Fig) was designed and generated by Gibson cloning in

which the gtr6 gene was followed by the hygromycin-FRT cassette and housed in a pUC19

background. gtr6, hygromycin-FRT resistance cassette and the pUC19 plasmid were amplified

by PCR separately (S1 Text). gtr6 and the pUC19 were amplified using Q5 High-Fidelity Mas-

ter Mix (NEB), as described previously. The PCR conditions for gtr6 were: initial denaturation

at 98˚C for 3 mins., followed by 35 cycles of 96˚C for 10 secs, 60˚C for 30 secs, 72˚C for 2 mins

and 15 secs and the final extension was done at 72˚C for 5 mins and for pUC19 were: initial

denaturation at 98˚C for 3 mins followed by 35 cycles of 96˚C for 10 secs, 58˚C for 30 secs,

72˚C for 2 mins and 15 secs and the final extension was done at 72˚C for 5 mins. The hygro-

mycin-FRT cassette was amplified using Phusion HotStart II DNA Polymerase (Thermo Sci-

entific). The reaction mixture (200 μL) contained 80 ng of template (pSC2), 1X GC buffer,

0.5 μM of each primer, 0.2 mM of each dNTPs and 3% DMSO. The PCR conditions for hygro-

mycin-FRT gene cassette were: initial denaturation at 98˚C for 3 mins followed by 35 cycles of

96˚C for 10 secs, 70˚C for 30 secs, 72˚C for 2 mins and the final extension was done at 72˚C

for 5 mins. The three linear PCR amplicons were then purified using Monarch PCR & DNA

Cleanup Kit (NEB). Equimolar amounts of these purified linearized fragments were ligated

and circularized using Gibson Assembly Cloning Kit (NEB) following manufacturer’s protocol

with the resultant generation of pSC1. 10 μL of the Gibson mix was transformed into electro-

competent E. coli JM101as described previously. Recombinant clones (JM101/pSC1) were

selected by resistance to hygromycin and ampicillin.

Next, the plasmid pSC1 (S2D Fig) was isolated from JM101/pSC1 to enable amplification

of the chimeric gtr6-hygromycin-FRT cassette using the primers Gtr6-Hyg 5 and Gtr6-Hyg 3

(S3 Text) and Phusion HotStart II DNA Polymerase as described previously. The PCR condi-

tions were: initial denaturation at 98˚C for 3 mins followed by 35 cycles of 96˚C for 10 secs,

68˚C for 30 secs, 72˚C for 2 mins and 15 secs and the final extension was done at 72˚C for 5

mins. The amplified product was concentrated to 1 μg/μL. Five μg of the linear chimeric gtr6-

hygromycin-FRT cassette was transformed into electrocompetent A. baumannii HUMC1/

pAT04. Electrocompetent A. baumannii HUMC1/pAT04 was prepared as described above

with the following modifications: after 45 mins of growth, 2mM IPTG (which induces the

recombinase) was added to the culture used to generate electrocompetent cells; IPTG (2mM)

was also added to 4 mL of LB during the revival of the transformed culture, post-electropora-

tion. Recombinant clones were selected on LB hygromycin (500 μg/mL). The correct site of

recombination for the chimeric gtr6-hygromycin-FRT cassette into the chromosome, was
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confirmed by PCR amplification of the flanking regions of the gtr6 neighborhood (Gtr6-Hyg

Internal 5 and Gtr6-Hyg Flanking 3). The loss of the transposes (as expected) was also con-

firmed by sequencing the recombinant gtr6 gene. The pAT04 was cured by selecting the

HUMCI::gtr6-hygromycin strain consecutively on LB hygromycin for three times. Loss of

PCR amplification by CHK5Tet and CHK3Tet primers confirmed loss of pAT04.

Flippase mediated excision of hygromycin resistance cassette HUMC1::gtr6-hygromy-

cin to create HUMC1::gtr6. Electrocompetent cells of pAT04-cured HUMC1::gtr6:-hygro-

mycin were prepared as described above. The flippase encoding plasmid pAT03a (560ng) was

transformed into HUMC1::gtr6-hygromycin via electroporation (100μL competent cells in a

0.2cm cuvette at 1.8 kV, 25 μF and 200 O). The cells were subsequently grown in 1mL of LB

broth containing 2mM IPTG (to induce flippase expression) for 90 min. at 37˚C, 275 rpm.

Cell suspensions were plated on LB plates containing tetracycline at 20 μg/mL. Recombinant

colonies of interest in which flippase-mediated excision of the hygromycin cassette occurred

were identified as tetracycline resistant, hygromycin sensitive when screened on LB tetracy-

cline and LB hygromycin (500 μg/μL) plates. Colonies with this phenotype were further

screened for the absence of the hygromycin cassette via PCR (2xFrogga Mix, primers

Gtr6-Hyg Internal 5 and Gtr6-Hyg Flanking 3 (S3 Text), 95˚C– 2min, [95˚C– 30sec, 53˚C–

30sec, 72˚C– 1:30 min] x25, 72˚C– 10min, 4˚C—hold). Several colonies identified as having

lost the hygromycin cassette were grown consecutively 6 times without any selection pressure

in order to cure pAT03a. Phenotypic sensitivity to tetracycline followed by subsequent physical

confirmation of the loss of the tetracycline gene cassette via PCR (using primers CHK5Tet and

CHK3Tet as described) confirmed the loss of pAT03a. One colony of HUMC1::gtr6 was used

for further study. Genomic DNA was extracted and 62 ng was used as template in a 25μL PCR

reaction with outside primers 1128/1129 (S3 Text) (0.5nM each), dNTPs (0.2nM), 5% DMSO,

GC buffer and Phusion Hotstart II DNA Polymerase (Thermo Scientific). The reaction was

visualized on an agarose gel and the band of the expected size was gel purified using the Mon-

arch Gel Extraction Kit (NEB). Sequence analysis confirmed that HUMC1::gtr6 possessed the

restored genotype.

Construction of the ATCC 17978 Δgtr6/pSC1a rescue plasmid. In order to make pSC1,

the gtr6-hyg chimeric cassette was inserted in the middle of the lacZ gene of puc19, where all of

the gene except of 5’ end 32 bases, was deleted. However, the gtr6 gene in pSC1 was devoid of

its promoter and was not inducible. Additionally, as a small portion of the 5’ end of the lacZ
gene remained, the gtr6 gene could not be induced by the lac promoter either. Hence, we

decided to delete the 5’ end fragment of lacZ from the gtr6 upstream region and clone the 192

base pair long indigenous promoter region of gtr6 upstream of the gene itself thus creating

pSC1a. The plasmid pSC1 (S2E Fig) and the gtr6 indigenous promoter sequence (192 bp) were

PCR amplified (S3 Text). The linearized plasmid PCR product was purified with NEB PCR

clean up kit using manufacturer’s protocol while the promoter region PCR product was gel

purified by NEB Gel purification kit following manufacturer’s protocol. The linear fragments

were subjected to Gibson cloning using NEB Gibson Cloning kit following manufacturer’s

protocol and was transformed in to NEB 5α Competent E. coli cells. The recombinant clones

were selected on LB Hygromycin (150μg/mL) agar plates. Putative clones were grown over-

night in 5mL LB Hygromycin (150μg/mL) broth and 1uL was used to perform colony PCR

with primers Gtr6-Hyg Internal 5&3 as described previously.

RNA sequencing

RNA sequencing was performed via a commercial platform (Novogene Corporation Inc, Sac-

ramento, CA). Bacterial cells were grown overnight in tryptic soy broth, sub-cultured to

PLOS PATHOGENS Capsule carbohydrate structure determines virulence in Acinetobacter baumannii

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009291 February 2, 2021 17 / 24

https://doi.org/10.1371/journal.ppat.1009291


logarithmic phase in tryptic soy broth, and cell pellets snap-frozen in liquid nitrogen. Follow-

ing RNA extraction, total RNA was quantified, checked for purity via spectrophotometer,

checked for integrity, and quantified using the RNA 6000 assay on the Bioanalyzer 2100 sys-

tem. 1 μg total RNA was used per sample and sequencing libraries were analyzed via an Illu-

mina sequence platform. Following quality control, reads were mapped to the ATCC 17978

reference genome and differential gene expression was quantified using the DESeq2 R

package.

Phagocytosis assays

We utilized RAW 264.7 macrophage-like cells activated for 24 hours with interferon-γ (IFN-

γ), a condition comparable to activation with LPS [40,41] and previously utilized to success-

fully phagocytose A. baumannii strains [7]. RAW 264.7 cells were passaged in Dulbecco’s

Modified Eagle Medium (DMEM) (Gibco, Thermo Fisher Scientific, Waltham, MA USA

#11875135) supplemented with 10% Fetal Bovine Serum (FBS) (Atlanta Biologicals Inc, Flow-

ery Branch, GA USA #S11150) at 37˚C with 5% CO2 to a minimum of three and no more than

15 passages. After washing and counting, a concentration of 5×105 cells/mL were stimulated

with 1 μg/mL IFN- γ (Peprotech, Rocky Hill, NJ USA #315-05-B) and deposited onto glass

coverslips, followed by overnight incubation.

Where indicated, macrophages were incubated prior to the addition of bacteria for 30 min

at 37˚C and 5% CO2 with soluble carbohydrates or antibodies. To block uptake, 0.5 mg/mL

Mannan (Sigma-Aldrich, St. Louis, MO USA #M7504-100MG), 0.5 mg/mL Laminarin

(Sigma-Aldrich #L9634-500MG), 0.1 mg/mL Dextran Sulfate (Sigma-Aldrich #D4911-1G), or

10 mM EDTA (VWR, #82021–254) were added to cells prior to incubation with bacteria. To

neutralize receptors, anti-Dectin-1 (Invivogen, San Diego, CA USA #mabg-mdect), anti-CR3

(Thermo-Fisher, #14-0181-82), and anti-MR (Invivogen, #Mab-hMR) antibodies were added

at 1:200. Bacterial strains were grown in Tryptic Soy Broth (TSB) (VWR, Radnor, PA USA

#90000–372) overnight at 37˚C with shaking at 200 rpm, sub-cultured to logarithmic phase,

washed three times in PBS, diluted to 2×108 CFUs/mL based on OD600 measurements, and

added to RAW 264.7 cells at a multiplicity of infection of 20:1 in Hanks’ Balanced Salt Solution

(HBSS) (VWR, #45001–101) supplemented with 10% complement-active CD-1 mouse serum

(Innovative Research Inc., Novi, MI USA). In the case of complement dilution, two-fold dilu-

tions of complement-active mouse serum in PBS were generated and added to the assays, with

the total assay volume remaining at 1 mL. When performing mixed capsule assays, 1 μL puri-

fied capsule from strains was added to the culture plate prior to adding bacteria. Culture plates

were centrifuged at 300×g for 5 min and incubated for 1 h at 37˚C with 5% CO2. Plates were

washed three times in HBSS, stained with HEMA-3 stain (Thermo Fisher Scientific, #22–

122911), and mounted on glass microscope slides with VectaMount AQ aqueous mounting

solution (VWR, #H-5501). Macrophages were visualized at 1,000× total magnification under

oil immersion on a Leica DMLS brightfield microscope (Leica Microsystems Inc., Buffalo

Grove, IL USA). The total numbers of internalized bacteria in each fully visible phagocyte on

the microscope field were manually counted.

Gentamicin protection assays

RAW 264.7 cells were activated and prepared as described above, and co-incubated with

ATCC 17978 bacteria at a 20:1 MOI, with and without 200 μg/mL gentamicin and/or 20 μg/

mL cytochalasin D at 37˚C. At the 1-hour timepoint supernatant in gentamicin-free wells was

agitated by gentle pipetting to resuspend un-phagocytosed bacteria and 100uL taken for CFU

plating. In gentamicin-containing wells, gentamicin was added at the 1-hour timepoint

PLOS PATHOGENS Capsule carbohydrate structure determines virulence in Acinetobacter baumannii

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009291 February 2, 2021 18 / 24

https://doi.org/10.1371/journal.ppat.1009291


followed by incubation at 37˚C for 30 minutes. The supernatant was removed, macrophages

were washed twice with HBSS, and 0.5% sodium deoxycholate added to selectively lyse macro-

phages but not bacterial cells. Cells were scraped from the wells using a pipette tip and 100uL

of supernatant were plated for CFU measurement of internalized bacteria.

Bacterial capsule purification and quantification

Bacterial cells were grown in 10 mL TSB overnight, centrifuged at 4,000×g for 5 min, and

resuspended in 200 μL TAE buffer. 400 μL Lysis Buffer (100 mM SDS, 50 mM Tris, 0.128 mM

NaCl) was added and solutions mixed by inversion. 600 μL of 25:24:1 phenol:chloroform:isoa-

myl alcohol solution was added and the solution was vortexed vigorously for 2 min until

cloudy white. Samples were heated at 65˚C for 15 min on a dry heating block and centrifuged

in a benchtop centrifuge at 10,000 rpm for 15 min at 4˚C. The upper aqueous phase was trans-

ferred to a new 1-mL tube and 200 μL sterile water was added. 50 μL 3 M sodium acetate and 1

mL ice-cold ethanol were added and the solution was mixed slowly by inversion. The solution

was then held at -80˚C overnight. The capsule extract was then purified by adding 3 μL 10 mg/

mL DNase and 3 μL 10 mg/mL RNase and incubated at 37˚C for 45 min. 5 μL 20 μg/mL Pro-

teinase K was then added and the solution was incubated at 56˚C for 1 h. An equal volume of

phenol-chloroform-isoamyl alcohol mix was added and the solution was vigorously vortexed

for 30 s. The samples were centrifuged at 10,000 rpm for 15 min at 4˚C and the aqueous phase

was transferred to a new 1.7-mL tube. 193 μL 50 mM Tris, 7 μL 3 M sodium acetate, a 3-fold

greater volume of ice-cold ethanol was added and the samples were placed at -80˚C overnight.

The samples were spun at 10,000 rpm in a benchtop centrifuge at 4˚C for 30 min, and resus-

pended in 50 μL sterile water.

To quantify total capsule carbohydrate content, bacterial cells were prepared as above and

diluted to OD600 0.5 and plated to count CFUs. After extraction in parallel as described above,

total carbohydrate content was assayed via colorimetry as described elsewhere [42,43] in

96-well plates in a plate reader set to detect absorbance at 315 nm.

siRNA knockdown in RAW 264.7 cells

RAW 264.7 cells were passaged in RPMI Medium 1640 (Gibco, Thermo Fisher Scientific, Wal-

tham, MA USA #11875135) supplemented with 10% FBS at 37˚C with 5% CO2. 2.5×105 cells

were deposited onto glass coverslips in 6-well tissue-culture treated plates, centrifuged at

300×g for 5 min, and allowed to adhere via incubation at 37˚C with 5% CO2 for 1 h. Lipofecta-

mine RNAiMAX Reagent (Thermo Fisher Scientific, Waltham, MA US #13387) was diluted in

Opti-MEM Reduced Serum Medium (Thermo Fisher Scientific #31985062), and mixed 1:1

with anti-Dectin-1, anti-CR3, or scramble Mouse Silencer Select siRNA (Thermo Fisher Scien-

tific #430817) diluted in Opti-MEM Reduced Serum Medium per manufacturer recommenda-

tions. siRNA-lipid complexes were added to wells with RAW 264.7 cells at 12.5 pmol and

incubated for 24 h at 37˚C with 5% CO2. Cells were then activated with 1 μg/mL IFN-γ, incu-

bated for a further 24 h, and macrophage uptake assays were performed as above. To verify

siRNA knockdown efficiency, CR3 or scramble siRNA knockdown was performed as

described above, total RNA extracted, converted to cDNA, and finally measured via ΔΔCt RT-

qPCR and expressed as a percentage of knockdown efficiency compared to the housekeeping

gene GAPDH.

Harvesting of elicited peritoneal phagocytes

3.8% Brewer Thioglycollate Broth was prepared by suspending 38 g Brewer Thioglycollate

Medium (Sigma-Aldrich #B2551) in 1 L distilled water and sterilized by autoclaving at 121˚C
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for 15 min. Male wild-type C57BL/6 mice, Dectin-1 KO, and CR3-KO mice (The Jackson Lab-

oratory, Bar Harbor, ME) were injected intraperitoneally with 2 mL thioglycolate broth and

peritoneal fluid was harvested: 72 h post-injection for macrophages; 24 h post-injection for

neutrophils [44,45]. For harvesting, 5 mL warm PBS was injected directly into the peritoneum

after euthanasia and aspirated. Suspended cells were then washed and resuspended in DMEM

supplemented with 10% FBS. Cells were then incubated in T75 tissue-culture flasks for 2 h at

37˚C with 5% CO2 to allow for adhesion. Non-adherent cells were removed by washing twice

with warm DPBS, and adherent cells were resuspended in DMEM with 10% FBS followed by

phagocytosis assays as described above.

In Vivo infection model

Bacterial cultures were grown to logarithmic phase and washed as described previously[7].

Cultures were diluted so that 250 μL contained the target inoculum, which varied by strain

and experiment. For lethal concentration and CFU experiments, male C3HeB/Fe mice aged

8–12 weeks were purchased from The Jackson Laboratory. For all knockout mouse experi-

ments, male mice aged 8–12 weeks on a C57BL/6 background (strain # 003991 for CR3 KO

and # 012337 for Dectin-1) along with wild-type controls were purchased from The Jackson

Laboratory. Mice were briefly warmed under a heat lamp to dilate tail veins and 250 μL bacte-

rial inocula were injected into the lateral tail vein. Mice were either monitored for survival

with a moribundity endpoint in accordance with IACUC protocol or were euthanized follow-

ing the administration of ketamine/xylazine and heparin per manufacturer instructions. Blood

was collected from euthanized animals via cardiac puncture and serial dilutions plated on TSA

for enumeration of CFUs. For cobra venom factor (CVF), 15 μg recombinant CVF resus-

pended in 200 μL PBS was injected intraperitoneally 48 hours prior to infection.

Bacterial flow cytometry

Bacterial cultures were grown to logarithmic phase and washed as described previously. 1×107

CFU were incubated with 10% complement-active mouse serum for 1 h at 37˚C, washed three

times with PBS, incubated with antibodies against mouse complement factor C3b (Thermo

Fisher, clone 6C9) or an isotype control for 30 min, washed three times with PBS, and incu-

bated with a secondary fluorescent antibody followed by three washes. Samples were then

resuspended in FACS buffer and run on a Becton-Dickinson FACS Canto II flow cytometer,

collecting 20,000 events per sample and gating on single cells with positive gates established at

a fluorescence excluding 99% of the isotype control samples.

Statistics

All in vitro experiments were performed with one biological replicate and were repeated once.

For phagocytosis assays, five images were taken per coverslip and all cells within each image

were counted. Median bacteria per macrophage were measured and non-parametric Mann-

Whitney statistical tests were performed. For flow cytometry, all experiments were repeated

once and 20,000 events per sample were collected. Fluorescence gates were established by

excluding 99% of isotype control events. Statistical significance of proportions by positive and

negative fluorescence was established via Chi-square contingency tests. In vivo experiments

consisted of n = 5 animals per condition and were repeated once. Replicates were pooled and

statistical significance was established via log-rank (Mantel-Cox) survival tests. All statistical

tests were generated using Prism GraphPad 6 software.
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Supporting information

S1 Fig. RNA Sequencing of HUMC1, SiRNA knockdown efficiency of CR3 in RAW 264.7

cells and phagocytosis assays with complement-depleted serum. (A) RNA sequencing of

wild-type HUMC1 and HUMC1::gtr6 showed no differential gene expression. (B) RAW 264.7

cells were incubated with anti-CR3 or scramble siRNA and knockdown efficiency measured

via ΔΔCt RT-qPCR vs. the GAPDH housekeeping gene. (C) RAW 264.7 cells were incubated

with ATCC 17978 in normal serum, in serum-free conditions, in serum selectively depleted of

C3, and serum pre-treated with 15μg/mL cobra venom factor to deplete C3 + C5. � = p< 0.01.

(TIF)

S2 Fig. Plasmids synthesized for mutant generation. For the generation of the HUMC1::gtr6
mutant, plasmids (A) pAT03a-Tet, (B) pAT04, (C) pSC2, (D) pSC1 and (E) pSC1a were all

synthesized as described in the Materials and Methods section.

(TIF)

S1 Text. List of all plasmids used in mutant generation. Plasmid name, drug marker, func-

tion, and origin are listed.

(DOCX)

S2 Text. Sequence of hygromycin resistance cassette for mutant generation. The cassette

includes the FRT site (red), promoter site for hygromycin (green), and the hygromycin resis-

tance gene (blue).

(DOCX)

S3 Text. List of all primers used for mutant generation. Primer name, description, and

sequence are listed. Underline–first/last 126bp of the gtr6 ORF at the 5’ end.

(DOCX)
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