49 research outputs found

    Single vortex-antivortex pair in an exciton polariton condensate

    Full text link
    In a homogeneous two-dimensional system at non-zero temperature, although there can be no ordering of infinite range, a superfluid phase is predicted for a Bose liquid. The stabilization of phase in this superfluid regime is achieved by the formation of bound vortex-antivortex pairs. It is believed that several different systems share this common behaviour, when the parameter describing their ordered state has two degrees of freedom, and the theory has been tested for some of them. However, there has been no direct experimental observation of the phase stabilization mechanism by a bound pair. Here we present an experimental technique that can identify a single vortex-antivortex pair in a two-dimensional exciton polariton condensate. The pair is generated by the inhomogeneous pumping spot profile, and is revealed in the time-integrated phase maps acquired using Michelson interferometry, which show that the condensate phase is only locally disturbed. Numerical modelling based on open dissipative Gross-Pitaevskii equation suggests that the pair evolution is quite different in this non-equilibrium system compared to atomic condensates. Our results demonstrate that the exciton polariton condensate is a unique system for studying two-dimensional superfluidity in a previously inaccessible regime

    Prediction of functional outcome after acute ischemic stroke : comparison of the CT-DRAGON score and a reduced features set

    Get PDF
    Background and Purpose:The CT-DRAGON score was developed to predict long-term functional outcome after acute stroke in the anterior circulation treated by thrombolysis. Its implementation in clinical practice may be hampered by its plethora of variables. The current study was designed to develop and evaluate an alternative score, as a reduced set of features, derived from the original CT-DRAGON score. Methods:This single-center retrospective study included 564 patients treated for stroke, in the anterior and the posterior circulation. At 90 days, favorable [modified Rankin Scale score (mRS) of 0-2] and miserable outcome (mRS of 5-6) were predicted by the CT-DRAGON in 427 patients. Bootstrap forests selected the most relevant parameters of the CT-DRAGON, in order to develop a reduced set of features. Discrimination, calibration and misclassification of both models were tested. Results:The area under the receiver operating characteristic curve (AUROC) for the CT-DRAGON was 0.78 (95% CI 0.74-0.81) for favorable and 0.78 (95% CI 0.72-0.83) for miserable outcome. Misclassification was 29% for favorable and 13.5% for miserable outcome, with a 100% specificity for the latter. National Institutes of Health Stroke Scale (NIHSS), pre-stroke mRS and age were identified as the strongest contributors to favorable and miserable outcome and named the reduced features set. While CT-DRAGON was only available in 323 patients (57%), the reduced features set could be calculated in 515 patients (91%) (p < 0.001). Misclassification was 25.8% for favorable and 14.4% for miserable outcome, with a 97% specificity for miserable outcome. The reduced features set had better discriminative power than CT-DRAGON for both outcomes (both p < 0.005), with an AUROC of 0.82 (95% CI 0.79-0.86) and 0.83 (95% CI 0.77-0.87) for favorable and miserable outcome, respectively. Conclusions:The CT-DRAGON score revealed acceptable discrimination in our cohort of both anterior and posterior circulation strokes, receiving all treatment modalities. The reduced features set could be measured in a larger cohort and with better discrimination. However, the reduced features set needs further validation in a prospective, multicentre study

    Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing

    Full text link
    [EN] This study evaluates the performance of the Bruker positron emission tomograph (PET) insert combined with a BioSpec 70/30 USR magnetic resonance imaging (MRI) scanner using the manufacturer acceptance protocol and the NEMA NU 4-2008 for small animal PET. The PET insert is made of 3 rings of 8 monolithic LYSO crystals (50 x 50 x 10 mm(3)) coupled to silicon photomultipliers (SiPM) arrays, conferring an axial and transaxial FOV of 15 cm and 8 cm. The MRI performance was evaluated with and without the insert for the following radiofrequency noise, magnetic field homogeneity and image quality. For the PET performance, we extended the NEMA protocol featuring system sensitivity, count rates, spatial resolution and image quality to homogeneity and accuracy for quantification using several MRI sequences (RARE, FLASH, EPI and UTE). The PET insert does not show any adverse effect on the MRI performances. The MR field homogeneity is well preserved (Diameter Spherical Volume, for 20 mm of 1.98 +/- 4.78 without and -0.96 +/- 5.16 Hz with the PET insert). The PET insert has no major effect on the radiofrequency field. The signal-to-noise ratio measurements also do not show major differences. Image ghosting is well within the manufacturer specifications (<2.5%) and no RF noise is visible. Maximum sensitivity of the PET insert is 11.0% at the center of the FOV even with simultaneous acquisition of EPI and RARE. PET MLEM resolution is 0.87 mm (FWHM) at 5 mm off-center of the FOV and 0.97 mm at 25 mm radial offset. The peaks for true/noise equivalent count rates are 410/240 and 628/486 kcps for the rat and mouse phantoms, and are reached at 30.34/22.85 and 27.94/22.58 MBq. PET image quality is minimally altered by the different MRI sequences. The Bruker PET insert shows no adverse effect on the MRI performance and demonstrated a high sensitivity, sub-millimeter resolution and good image quality even during simultaneous MRI acquisition.We acknowledge the KU Leuven core facility, Molecular Small Animal Imaging Center (MoSAIC), for their support with obtaining scientific data presented in this paper. This work was supported by Stichting tegen Kanker (2015-145, Christophe M. Deroose) and Hercules foundation (AKUL/13/029, Uwe Himmelreich) for the purchase of the PET and MRI equipment respectively. The work was supported by the following funding organizations: European Commission for the PANA project (H2020-NMP-2015-two-stage, grant 686009) and the European ERA-NET project 'CryptoView' (3rd call of the FP7 program Infect-ERA).Gsell, W.; Molinos, C.; Correcher, C.; Belderbos, S.; Wouters, J.; Junge, S.; Heidenreich, M.... (2020). Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing. Physics in Medicine and Biology. 65(24):1-16. https://doi.org/10.1088/1361-6560/aba08cS1166524Balezeau, F., Eliat, P.-A., Cayamo, A. B., & Saint-Jalmes, H. (2011). Mapping of low flip angles in magnetic resonance. Physics in Medicine and Biology, 56(20), 6635-6647. doi:10.1088/0031-9155/56/20/008Benlloch, J. M., González, A. J., Pani, R., Preziosi, E., Jackson, C., Murphy, J., … Schwaiger, M. (2018). The MINDVIEW project: First results. European Psychiatry, 50, 21-27. doi:10.1016/j.eurpsy.2018.01.002Cal-Gonzalez, J., Rausch, I., Shiyam Sundar, L. K., Lassen, M. L., Muzik, O., Moser, E., … Beyer, T. (2018). Hybrid Imaging: Instrumentation and Data Processing. Frontiers in Physics, 6. doi:10.3389/fphy.2018.00047Clark, D. P., & Badea, C. T. (2014). Micro-CT of rodents: State-of-the-art and future perspectives. Physica Medica, 30(6), 619-634. doi:10.1016/j.ejmp.2014.05.011Drzezga, A., Souvatzoglou, M., Eiber, M., Beer, A. J., Fürst, S., Martinez-Möller, A., … Schwaiger, M. (2012). First Clinical Experience with Integrated Whole-Body PET/MR: Comparison to PET/CT in Patients with Oncologic Diagnoses. Journal of Nuclear Medicine, 53(6), 845-855. doi:10.2967/jnumed.111.098608Gonzalez, A. J., Aguilar, A., Conde, P., Hernandez, L., Moliner, L., Vidal, L. F., … Benlloch, J. M. (2016). A PET Design Based on SiPM and Monolithic LYSO Crystals: Performance Evaluation. IEEE Transactions on Nuclear Science, 63(5), 2471-2477. doi:10.1109/tns.2016.2522179Gonzalez, A. J., Pincay, E. J., Canizares, G., Lamprou, E., Sanchez, S., Catret, J. V., … Correcher, C. (2019). Initial Results of the MINDView PET Insert Inside the 3T mMR. IEEE Transactions on Radiation and Plasma Medical Sciences, 3(3), 343-351. doi:10.1109/trpms.2018.2866899Grant, A. M., Lee, B. J., Chang, C.-M., & Levin, C. S. (2017). Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert. Medical Physics, 44(1), 112-120. doi:10.1002/mp.12031Habte, F., Ren, G., Doyle, T. C., Liu, H., Cheng, Z., & Paik, D. S. (2013). Impact of a Multiple Mice Holder on Quantitation of High-Throughput MicroPET Imaging With and Without Ct Attenuation Correction. Molecular Imaging and Biology, 15(5), 569-575. doi:10.1007/s11307-012-0602-yHammer, B. E., Christensen, N. L., & Heil, B. G. (1994). Use of a magnetic field to increase the spatial resolution of positron emission tomography. Medical Physics, 21(12), 1917-1920. doi:10.1118/1.597178Jadvar, H., & Colletti, P. M. (2014). Competitive advantage of PET/MRI. European Journal of Radiology, 83(1), 84-94. doi:10.1016/j.ejrad.2013.05.028Judenhofer, M. S., Catana, C., Swann, B. K., Siegel, S. B., Jung, W.-I., Nutt, R. E., … Pichler, B. J. (2007). PET/MR Images Acquired with a Compact MR-compatible PET Detector in a 7-T Magnet. Radiology, 244(3), 807-814. doi:10.1148/radiol.2443061756Kinahan, P. E., Townsend, D. W., Beyer, T., & Sashin, D. (1998). Attenuation correction for a combined 3D PET/CT scanner. Medical Physics, 25(10), 2046-2053. doi:10.1118/1.598392Ko, G. B., Yoon, H. S., Kim, K. Y., Lee, M. S., Yang, B. Y., Jeong, J. M., … Lee, J. S. (2016). Simultaneous Multiparametric PET/MRI with Silicon Photomultiplier PET and Ultra-High-Field MRI for Small-Animal Imaging. Journal of Nuclear Medicine, 57(8), 1309-1315. doi:10.2967/jnumed.115.170019Lee, B. J., Grant, A. M., Chang, C.-M., Watkins, R. D., Glover, G. H., & Levin, C. S. (2018). MR Performance in the Presence of a Radio Frequency-Penetrable Positron Emission Tomography (PET) Insert for Simultaneous PET/MRI. IEEE Transactions on Medical Imaging, 37(9), 2060-2069. doi:10.1109/tmi.2018.2815620Loening, A. M., & Gambhir, S. S. (2003). AMIDE: A Free Software Tool for Multimodality Medical Image Analysis. Molecular Imaging, 2(3), 131-137. doi:10.1162/153535003322556877Mannheim, J. G., Schmid, A. M., Schwenck, J., Katiyar, P., Herfert, K., Pichler, B. J., & Disselhorst, J. A. (2018). PET/MRI Hybrid Systems. Seminars in Nuclear Medicine, 48(4), 332-347. doi:10.1053/j.semnuclmed.2018.02.011Maramraju, S. H., Smith, S. D., Junnarkar, S. S., Schulz, D., Stoll, S., Ravindranath, B., … Schlyer, D. J. (2011). Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Physics in Medicine and Biology, 56(8), 2459-2480. doi:10.1088/0031-9155/56/8/009Molinos, C., Sasser, T., Salmon, P., Gsell, W., Viertl, D., Massey, J. C., … Heidenreich, M. (2019). Low-Dose Imaging in a New Preclinical Total-Body PET/CT Scanner. Frontiers in Medicine, 6. doi:10.3389/fmed.2019.00088Nagy, K., Tóth, M., Major, P., Patay, G., Egri, G., Häggkvist, J., … Gulyás, B. (2013). Performance Evaluation of the Small-Animal nanoScan PET/MRI System. Journal of Nuclear Medicine, 54(10), 1825-1832. doi:10.2967/jnumed.112.119065Nanni, C., & Torigian, D. A. (2008). Applications of Small Animal Imaging with PET, PET/CT, and PET/MR Imaging. PET Clinics, 3(3), 243-250. doi:10.1016/j.cpet.2009.01.002Omidvari, N., Cabello, J., Topping, G., Schneider, F. R., Paul, S., Schwaiger, M., & Ziegler, S. I. (2017). PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner. Physics in Medicine & Biology, 62(22), 8671-8692. doi:10.1088/1361-6560/aa910dOmidvari, N., Topping, G., Cabello, J., Paul, S., Schwaiger, M., & Ziegler, S. I. (2018). MR-compatibility assessment of MADPET4: a study of interferences between an SiPM-based PET insert and a 7 T MRI system. Physics in Medicine & Biology, 63(9), 095002. doi:10.1088/1361-6560/aab9d1Raylman, R. R., Majewski, S., Lemieux, S. K., Velan, S. S., Kross, B., Popov, V., … Marano, G. D. (2006). Simultaneous MRI and PET imaging of a rat brain. Physics in Medicine and Biology, 51(24), 6371-6379. doi:10.1088/0031-9155/51/24/006Roncali, E., & Cherry, S. R. (2011). Application of Silicon Photomultipliers to Positron Emission Tomography. Annals of Biomedical Engineering, 39(4), 1358-1377. doi:10.1007/s10439-011-0266-9Schug, D., Lerche, C., Weissler, B., Gebhardt, P., Goldschmidt, B., Wehner, J., … Schulz, V. (2016). Initial PET performance evaluation of a preclinical insert for PET/MRI with digital SiPM technology. Physics in Medicine and Biology, 61(7), 2851-2878. doi:10.1088/0031-9155/61/7/2851Shao, Y., Cherry, S. R., Farahani, K., Meadors, K., Siegel, S., Silverman, R. W., & Marsden, P. K. (1997). Simultaneous PET and MR imaging. Physics in Medicine and Biology, 42(10), 1965-1970. doi:10.1088/0031-9155/42/10/010Steinert, H. C., & von Schulthess, G. K. (2002). Initial clinical experience using a new integrated in-line PET/CT system. The British Journal of Radiology, 75(suppl_9), S36-S38. doi:10.1259/bjr.75.suppl_9.750036Stortz, G., Thiessen, J. D., Bishop, D., Khan, M. S., Kozlowski, P., Retière, F., … Sossi, V. (2017). Performance of a PET Insert for High-Resolution Small-Animal PET/MRI at 7 Tesla. Journal of Nuclear Medicine, 59(3), 536-542. doi:10.2967/jnumed.116.187666Townsend, D. W. (2008). Combined Positron Emission Tomography–Computed Tomography: The Historical Perspective. Seminars in Ultrasound, CT and MRI, 29(4), 232-235. doi:10.1053/j.sult.2008.05.006Vandenberghe, S., & Marsden, P. K. (2015). PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Physics in Medicine and Biology, 60(4), R115-R154. doi:10.1088/0031-9155/60/4/r115Vaquero, J. J., & Kinahan, P. (2015). Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. Annual Review of Biomedical Engineering, 17(1), 385-414. doi:10.1146/annurev-bioeng-071114-040723Von Schulthess, G. K., & Schlemmer, H.-P. W. (2008). A look ahead: PET/MR versus PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 36(S1), 3-9. doi:10.1007/s00259-008-0940-9Wehner, J., Weissler, B., Dueppenbecker, P. M., Gebhardt, P., Goldschmidt, B., Schug, D., … Schulz, V. (2015). MR-compatibility assessment of the first preclinical PET-MRI insert equipped with digital silicon photomultipliers. Physics in Medicine and Biology, 60(6), 2231-2255. doi:10.1088/0031-9155/60/6/2231Wehrl, H. F., Judenhofer, M. S., Thielscher, A., Martirosian, P., Schick, F., & Pichler, B. J. (2010). Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magnetic Resonance in Medicine, 65(1), 269-279. doi:10.1002/mrm.22591Yamamoto, S., Imaizumi, M., Kanai, Y., Tatsumi, M., Aoki, M., Sugiyama, E., … Hatazawa, J. (2010). Design and performance from an integrated PET/MRI system for small animals. Annals of Nuclear Medicine, 24(2), 89-98. doi:10.1007/s12149-009-0333-6Yamamoto, S., Watabe, T., Watabe, H., Aoki, M., Sugiyama, E., Imaizumi, M., … Hatazawa, J. (2011). Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system. Physics in Medicine and Biology, 57(2), N1-N13. doi:10.1088/0031-9155/57/2/n1Zaidi, H., Montandon, M.-L., & Alavi, A. (2008). The Clinical Role of Fusion Imaging Using PET, CT, and MR Imaging. PET Clinics, 3(3), 275-291. doi:10.1016/j.cpet.2009.03.00

    Clinical review: Practical recommendations on the management of perioperative heart failure in cardiac surgery

    Get PDF
    Acute cardiovascular dysfunction occurs perioperatively in more than 20% of cardiosurgical patients, yet current acute heart failure (HF) classification is not applicable to this period. Indicators of major perioperative risk include unstable coronary syndromes, decompensated HF, significant arrhythmias and valvular disease. Clinical risk factors include history of heart disease, compensated HF, cerebrovascular disease, presence of diabetes mellitus, renal insufficiency and high-risk surgery. EuroSCORE reliably predicts perioperative cardiovascular alteration in patients aged less than 80 years. Preoperative B-type natriuretic peptide level is an additional risk stratification factor. Aggressively preserving heart function during cardiosurgery is a major goal. Volatile anaesthetics and levosimendan seem to be promising cardioprotective agents, but large trials are still needed to assess the best cardioprotective agent(s) and optimal protocol(s). The aim of monitoring is early detection and assessment of mechanisms of perioperative cardiovascular dysfunction. Ideally, volume status should be assessed by 'dynamic' measurement of haemodynamic parameters. Assess heart function first by echocardiography, then using a pulmonary artery catheter (especially in right heart dysfunction). If volaemia and heart function are in the normal range, cardiovascular dysfunction is very likely related to vascular dysfunction. In treating myocardial dysfunction, consider the following options, either alone or in combination: low-to-moderate doses of dobutamine and epinephrine, milrinone or levosimendan. In vasoplegia-induced hypotension, use norepinephrine to maintain adequate perfusion pressure. Exclude hypovolaemia in patients under vasopressors, through repeated volume assessments. Optimal perioperative use of inotropes/vasopressors in cardiosurgery remains controversial, and further large multinational studies are needed. Cardiosurgical perioperative classification of cardiac impairment should be based on time of occurrence (precardiotomy, failure to wean, postcardiotomy) and haemodynamic severity of the patient's condition (crash and burn, deteriorating fast, stable but inotrope dependent). In heart dysfunction with suspected coronary hypoperfusion, an intra-aortic balloon pump is highly recommended. A ventricular assist device should be considered before end organ dysfunction becomes evident. Extra-corporeal membrane oxygenation is an elegant solution as a bridge to recovery and/or decision making. This paper offers practical recommendations for management of perioperative HF in cardiosurgery based on European experts' opinion. It also emphasizes the need for large surveys and studies to assess the optimal way to manage perioperative HF in cardiac surgery

    Case-mix adjustment to compare nationwide hospital performances after resection of colorectal liver metastases

    Get PDF
    Background: Differences in patient demographics and disease burden can influence comparison of hospital performances. This study aimed to provide a case-mix model to compare short-term postoperative outcomes for patients undergoing liver resection for colorectal liver metastases (CRLM). Methods: This retrospective, population-based study included all patients who underwent liver resection for CRLM between 2014 and 2018 in the Netherlands. Variation in case-mix variables between hospitals and influence on postoperative outcomes was assessed using multivariable logistic regression. Primary outcomes were 30-day major morbidity and 30-day mortality. Validation of results was performed on the data from 2019. Results: In total, 4639 patients were included in 28 hospitals. Major morbidity was 6.2% and mortality was 1.4%. Uncorrected major morbidity ranged from 3.3% to 13.7% and mortality ranged from 0.0% to 5.0%. between hospitals. Significant differences between hospitals were observed for age higher than 80 (0.0%-17.1%, p <0.001), ASA 3 or higher (3.3%-36.3%, p <0.001), histopathological parenchymal liver disease (0.0%-47.1%, p <0.001), history of liver resection (8.1%-36.3%, p <0.001), major liver resection (6.7%-38.0%, p <0.001) and synchronous metastases (35.5%-62.1%, p <0.001). Expected 30-day major morbidity between hospitals ranged from 6.4% to 11.9% and expected 30-day mortality ranged from 0.6% to 2.9%. After case-mix correction no significant outliers concerning major morbidity and mortality remained. Validation on patients who underwent liver resection for CRLM in 2019 affirmed these outcomes. Conclusion: Case-mix adjustment is a prerequisite to allow for institutional comparison of short-term postoperative outcomes after liver resection for CRLM. (C) 2020 University Medical Center Groningen. Published by Elsevier Ltd

    Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease

    Get PDF
    Background & Aims: Obesity-associated inflammation is a key player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the role of macrophage scavenger receptor 1 (MSR1, CD204) remains incompletely understood. Methods: A total of 170 NAFLD liver biopsies were processed for transcriptomic analysis and correlated with clinicopathological features. Msr1(-/-) and wild-type mice were subjected to a 16-week high-fat and high-cholesterol diet. Mice and ex vivo human liver slices were treated with a monoclonal antibody against MSR1. Genetic susceptibility was assessed using genome-wide association study data from 1,483 patients with NAFLD and 430,101 participants of the UK Biobank. Results: MSR1 expression was associated with the occurrence of hepatic lipid-laden foamy macrophages and correlated with the degree of steatosis and steatohepatitis in patients with NAFLD. Mice lacking Msr1 were protected against diet-induced metabolic disorder, showing fewer hepatic foamy macrophages, less hepatic inflammation, improved dyslipidaemia and glucose tolerance, and altered hepatic lipid metabolism. Upon induction by saturated fatty acids, MSR1 induced a pro-inflammatory response via the JNK signalling pathway. In vitro blockade of the receptor prevented the accumulation of lipids in primary macrophages which inhibited the switch towards a proinflammatory phenotype and the release of cytokines such as TNF-alpha Targeting MSR1 using monoclonal antibody therapy in an obesity-associated NAFLD mouse model and human liver slices resulted in the prevention of foamy macrophage formation and inflammation. Moreover, we identified that rs41505344, a polymorphism in the upstream transcriptional region of MSR1, was associated with altered serum triglycerides and aspartate aminotransferase levels in a cohort of over 400,000 patients. Conclusions: Taken together, our data suggest that MSR1 plays a critical role in lipid-induced inflammation and could thus be a potential therapeutic target for the treatment of NAFLD. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease primarily caused by excessive consumption of fat and sugar combined with a lack of exercise or a sedentary lifestyle. Herein, we show that the macrophage scavenger receptor MSR1, an innate immune receptor, mediates lipid uptake and accumulation in Kupffer cells, resulting in liver inflammation and thereby promoting the progression of NAFLD in humans and mice. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.Peer reviewe

    High Mountain Areas

    Get PDF
    The cryosphere (including, snow, glaciers, permafrost, lake and river ice) is an integral element of high-mountain regions, which are home to roughly 10% of the global population. Widespread cryosphere changes affect physical, biological and human systems in the mountains and surrounding lowlands, with impacts evident even in the ocean. Building on the IPCC’s Fifth Assessment Report (AR5), this chapter assesses new evidence on observed recent and projected changes in the mountain cryosphere as well as associated impacts, risks and adaptation measures related to natural and human systems. Impacts in response to climate changes independently of changes in the cryosphere are not assessed in this chapter. Polar mountains are included in Chapter 3, except those in Alaska and adjacent Yukon, Iceland, and Scandinavia, which are included in this chapter

    The G20 and the BRICS on Trade and Investment: Trends and Policies

    No full text
    International trade and investments declined sharply in the aftermath of the 2008 financial crisis. To coordinate policy responses in the wake of this crisis, the Group of Twenty (G20) was elevated to the leaders' level and the BRICS grouping of Brazil, Russia, India, China and South Africa was founded as a summit to gather leaders from the most important emerging economies. This contribution reviews the work of both fora to restore trade and investment. We show that, despite efforts to stimulate cross-border trade and investments, neither has returned to pre-crisis levels. This is especially the case regarding international investment for the G20 members, although the data show a revival of trade. In general, BRICS members have been able to recover more quickly. Although their decisions have not always been implemented by members, the G20 and BRICS have proven to be effective fora for coordinating efforts and compliance has been rather high. However, this contribution argues that more can be done, especially regarding investments. The future will tell whether these two bodies will continue to be complimentary and whether they will be able to withstand protectionist and nationalist reflexes.status: publishe
    corecore