106 research outputs found
Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols
(Poly)phenols are a large group of compounds, found in food, beverages, dietary supplements and herbal medicines. Owing to their biological activities, absorption and metabolism of the most abundant compounds in humans are well understood. Both the chemical structure of the phenolic moiety and any attached chemical groups define whether the polyphenol is absorbed in the small intestine, or reaches the colon and is subject to extensive catabolism by colonic microbiota. Untransformed substrates may be absorbed, appearing in plasma primarily as methylated, sulfated and glucuronidated derivatives, with in some cases the unchanged substrate. Many of the catabolites are well absorbed from the colon and appear in the plasma either similarly conjugated, or as glycine conjugates, or in some cases unchanged. Although many (poly)phenol catabolites have been identified in human plasma and / or urine, the pathways from substrate to final catabolite, and the species of bacteria and enzymes involved, are still scarcely reported. While it is clear that the composition of the human gut microbiota can be modulated in vivo by supplementation with some (poly)phenol-rich commodities, such modulation is definitely not an inevitable consequence of supplementation, it depends on the treatment, length of time and on the individual metabotype, and it is not clear whether the modulation is sustained when supplementation ceases. Some catabolites have been recorded in plasma of volunteers at concentrations similar to those shown to be effective in in vitro studies suggesting that some benefit may be achieved in vivo by diets yielding such catabolites
Recommended from our members
Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients
The systematic review demonstrates that the IM plays a major role in the breakdown and transformation of the dietary substrates examined. However, recent human data are limited with the exception of data from studies examining fibres and polyphenols. Results observed in relation with dietary substrates were not always consistent or coherent across studies and methodological limitations and differences in IM analyses made comparisons difficult. Moreover, non-digestible components likely to reach the colon are often not well defined or characterised in studies making comparisons between studies difficult if not impossible. Going forward, further rigorously controlled randomised human trials with well-defined dietary substrates and utilizing omic-based technologies to characterise and measure the IM and their functional activities will advance the field. Current evidence suggests that more detailed knowledge of the metabolic activities and interactions of the IM hold considerable promise in relation with host health
Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting
BACKGROUND: We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy. CONCLUSIONS/SIGNIFICANCE: Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics
Reduced microbial diversity in adult survivors of childhood acute lymphoblastic leukemia and microbial associations with increased immune activation
Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota
The Intestinal Microbiota in Metabolic Disease
Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet–host–microbe interactions
Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice
Protocols for intestinal permeability measurements in mice using 4-kDa fluorescein isothiocyanate-conjugated (FITC) dextran differ considerably among laboratories on the blood-sampling time. To find the optimal point in time for blood sampling, we administered 4-kDa FITC dextran to C3H mice and monitored the marker in plasma over 8 h. We also determined gut-transit time using 70-kDa FITC dextran, which does not cross the intestinal epithelium. The 4-kDa FITC dextran concentration in plasma reached its maximum 45 min after administration. The 70-kDa FITC dextran reached the jejunum after 15 min and passed the entire small intestine within 1 h after its administration, demonstrating that 4-kDa FITC dextran measured in plasma 1 h after its oral application is a marker of small intestinal permeability
The intestinal microbiota in metabolic disease
Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet-host-microbe interactions
Alleviation of high fat diet-induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum
SCOPE: Diet-induced obesity is associated with changes in the gut microbiota and low-grade inflammation. Oligofructose was reported to ameliorate high fat diet-induced metabolic disorders in mice by restoring the number of intestinal bifidobacteria. However, this has not been experimentally demonstrated. METHODS AND RESULTS: We fed conventional mice, germfree mice, mice associated with a simplified human gut microbiota composed of eight bacterial species including Bifidobacterium longum (SIHUMI), and mice associated with SIHUMI without B. longum a low fat diet (LFD), a high fat diet (HFD), or a HFD containing 10% oligofructose (HFD + OFS) for five weeks. We assessed body composition, bacterial cell numbers and metabolites, markers of inflammation, and gut permeability. Conventional mice fed HFD or HFD + OFS did not differ in body weight gain and glucose tolerance. The gnotobiotic mouse groups fed LFD or HFD + OFS gained less body weight and body fat, and displayed an improved glucose tolerance compared with mice fed HFD. These differences were not affected by the presence of B. longum. Mice fed HFD showed no signs of inflammation or increased intestinal permeability. CONCLUSION: The ability of oligofructose to reduce obesity and to improve glucose tolerance in gnotobiotic mice fed HFD was independent of the presence of B. longum
- …
