246 research outputs found

    An investigation of cotton for parachute cloth

    Get PDF
    This is a resume of the work of the Bureau of Standards on a cotton parachute cloth for use as a substitute for silk in the event of an emergency curtailing the supply. Cotton yarn of high strength in proportion to its weight and otherwise specially suitable for parachute cloth was developed. Cloth woven from this yarn in the bureau mill was equal or superior to parachute silk in strength and tear resistance, met the requirements with respect to air permeability, and weighed only a few tenths of an ounce per square yard more than the silk cloth. Practical trials of cotton parachutes carried out by the Navy Department clearly indicate that the cotton parachute closely approaches the silk parachute in performance as to rate of descent, opening time, strength and ability to function when stored in the pack for sixty days. The increase in weight of the equipment resulting from the use of cotton cloth instead of silk is considered to be well within practicable limits. A specification for cotton parachute cloth and the way in which the requirements of the specification have been met are given. Cotton yarns suitable for parachute cloth are now being woven commercially in the United States

    Prioritizing the risk of plant pests by clustering methods; self-organising maps, k-means and hierarchical clustering

    Get PDF
    For greater preparedness, pest risk assessors are required to prioritise long lists of pest species with potential to establish and cause significant impact in an endangered area. Such prioritization is often qualitative, subjective, and sometimes biased, relying mostly on expert and stakeholder consultation. In recent years, cluster based analyses have been used to investigate regional pest species assemblages or pest profiles to indicate the risk of new organism establishment. Such an approach is based on the premise that the cooccurrence of well-known global invasive pest species in a region is not random, and that the pest species profile or assemblage integrates complex functional relationships that are difficult to tease apart. In other words, the assemblage can help identify and prioritise species that pose a threat in a target region. A computational intelligence method called a Kohonen self-organizing map (SOM), a type of artificial neural network, was the first clustering method applied to analyse assemblages of invasive pests. The SOM is a well known dimension reduction and visualization method especially useful for high dimensional data that more conventional clustering methods may not analyse suitably. Like all clustering algorithms, the SOM can give details of clusters that identify regions with similar pest assemblages, possible donor and recipient regions. More important, however SOM connection weights that result from the analysis can be used to rank the strength of association of each species within each regional assemblage. Species with high weights that are not already established in the target region are identified as high risk. However, the SOM analysis is only the first step in a process to assess risk to be used alongside or incorporated within other measures. Here we illustrate the application of SOM analyses in a range of contexts in invasive species risk assessment, and discuss other clustering methods such as k-means, hierarchical clustering and the incorporation of the SOM analysis into criteria based approaches to assess pest risk

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure

    Lead isotopic evidence for synextensional lithospheric ductile flow in the Colorado River extensional corridor, western United States

    Get PDF
    This is the published version. Copyright 1998 American Geophysical Union. All Rights Reserved.Temporal changes in the Pb isotopic compositions of Miocene lavas erupted in the northern Colorado River extensional corridor suggest that lithospheric mantle and middle to deep crust migrated from beneath the Colorado Plateau into the corridor during extension. Basaltic to rhyolitic lavas erupted in the extensional corridor prior to 12.2 Ma have Pb isotopic values that are similar to those of Tertiary to Quaternary lavas erupted through Proterozoic Mojave crust, which comprises surface exposures of basement in the corridor and much of the extended territory to the west. In contrast, most post-12.2 Ma lavas from the same region have Pb isotopic compositions similar to those of lavas erupted through Arizona crust, which forms the basement of the Colorado Plateau. The changes in isotopic compositions of the basaltic lavas, and perhaps a portion of the changes in isotopic compositions of silicic lavas, are attributed to a change in the composition of the mantle source. However, the 206Pb/204Pb ratios for lavas erupted before and after 12.2 Ma in the corridor decrease with decreasing MgO concentrations, suggesting that the Pb isotopic compositions of crustal assimilants changed at about the same time as the composition of the mantle. In the area of the Black Mountains accommodation zone, the surface boundary between the Arizona and Mojave crustal provinces lies a minimum of 60–80 km to the east of the westernmost lava with an Arizona Pb isotopic signature. This distance cannot be accounted for by displacements along nearby major faults, suggesting that middle to deep Arizona crust flowed a significant distance to the west during extension

    Quantifying the potential for bluetongue virus transmission in Danish cattle farms

    Get PDF
    We used a mechanistic transmission model to estimate the number of infectious bites (IBs) generated per bluetongue virus (BTV) infected host (cattle) using estimated hourly microclimatic temperatures at 22,004 Danish cattle farms for the period 2000–2016, and Culicoides midge abundance based on 1,453 light-trap collections during 2007–2016. We used a range of published estimates of the duration of the hosts’ infectious period and equations for the relationship between temperature and four key transmission parameters: extrinsic incubation period, daily vector survival rate, daily vector biting rate and host-to-vector transmission rate resulting in 147,456 combinations of daily IBs. More than 82% combinations of the parameter values predicted > 1 IBs per host. The mean IBs (10–90th percentiles) for BTV per infectious host were 59 (0–73) during the transmission period. We estimated a maximum of 14,954 IBs per infectious host at some farms, while a best-case scenario suggested transmission was never possible at some farms. The use of different equations for the vector survival rate and host-to-vector transmission rates resulted in large uncertainty in the predictions. If BTV is introduced in Denmark, local transmission is very likely to occur. Vectors infected as late as mid-September (early autumn) can successfully transmit BTV to a new host until mid-November (late autumn)

    Research campaign: Macroscopic quantum resonators (MAQRO)

    Get PDF
    The objective of the proposed macroscopic quantum resonators (MAQRO) mission is to harness space for achieving long free-fall times, extreme vacuum, nano-gravity, and cryogenic temperatures to test the foundations of physics in macroscopic quantum experiments at the interface with gravity. Developing the necessary technologies, achieving the required sensitivities and providing the necessary isolation of macroscopic quantum systems from their environment will lay the path for developing novel quantum sensors. Earlier studies showed that the proposal is feasible but that several critical challenges remain, and key technologies need to be developed. Recent scientific and technological developments since the original proposal of MAQRO promise the potential for achieving additional science objectives. The proposed research campaign aims to advance the state of the art and to perform the first macroscopic quantum experiments in space. Experiments on the ground, in micro-gravity, and in space will drive the proposed research campaign during the current decade to enable the implementation of MAQRO within the subsequent decade
    • …
    corecore