644 research outputs found

    Orientation and solvatochromism of dyes in liquid crystals.

    Get PDF
    The orientation and solvatochromism of some dye molecules in a liquid crystal have been investigated. Interactions with the host and the structure of the dye molecule affect the macroscopic alignment of dichroic dye molecules in a liquid crystal: It was observed that some dye molecules show a large bathochromic shift of their absorption maxima in the liquid crystal host relative to the situation in isotropic solvents. It is suggested that this is due to the occurrence of a much weaker reaction field in the anisotropic, rigid host. These dye molecules show little or no apparent order in the anisotropic host despite the observation of a reduction in the electro optic switching time when the dye is present. The highest degree of macroscopic alignment was observed for a merocyanine compound, which showed the smallest solvatochromic shift in the liquid crystal host. These results are discussed in terms of the steric, dipolar and hydrogen bond interactions between the guest and the host

    Modelling the impact of curtailing antibiotic usage in food animals on antibiotic resistance in humans

    Get PDF
    Effect of curtailing antibiotic consumption in human

    Modelling the effects of antibiotic usage in livestock on human salmonellosis

    Get PDF
    Antibiotic usage in livestock has been suggested as a driver of antimicrobial resistance in human and livestock populations. This has contributed to the implementation of stewardship programs to curtail usage of antibiotics in livestock. However, the consequences of antibiotic curtailment in livestock on human health are poorly understood. There is the potential for increases in the carriage of pathogens such as Salmonella spp. in livestock, and subsequent increases in human foodborne disease. We use a mathematical model fitted to four case studies, ampicillin and tetracycline usage in fattening pig and broiler poultry populations, to explore the impact of curtailing antibiotic usage in livestock on salmonellosis in humans. Increases in the daily incidence of salmonellosis and a decrease in the proportion of resistant salmonellosis were identified following curtailment of antibiotic usage in livestock. The extent of these increases in human foodborne disease ranged from negligible, to controllable through interventions to target the farm-to-fork pathway. This study provides a motivating example of one plausible scenario following curtailment of antibiotic usage in livestock and suggests that a focus on ensuring good farm-to-fork hygiene and livestock biosecurity is sufficient to mitigate the negative human health consequences of antibiotic stewardship in livestock populations.ISSN:2352-771

    Failure of vaccination to prevent outbreaks of foot-and-mouth disease

    Get PDF
    Outbreaks of foot-and-mouth disease persist in dairy cattle herds in Saudi Arabia despite revaccination at intervals of 4-6 months. Vaccine trials provide data on antibody responses following vaccination. Using this information we developed a mathematical model of the decay of protective antibodies with which we estimated the fraction of susceptible animals at a given time after vaccination. The model describes the data well, suggesting over 95% take with an antibody half-life of 43 days. Farm records provided data on the time course of five outbreaks. We applied a 'SLIR' epidemiological model to these data, fitting a single parameter representing disease transmission rate. The analysis provides estimates of the basic reproduction number R(0), which may exceed 70 in some cases. We conclude that the critical intervaccination interval which would provide herd immunity against FMDV is unrealistically short, especially for heterologous challenge. We suggest that it may not be possible to prevent foot-and-mouth disease outbreaks on these farms using currently available vaccines

    Using genomics data to reconstruct transmission trees during disease outbreaks

    Get PDF

    Zoonotic disease research in East Africa

    Get PDF
    Abstract Background The East African region is endemic with multiple zoonotic diseases and is one of the hotspots for emerging infectious zoonotic diseases with reported multiple outbreaks of epidemic diseases such as Ebola, Marburg and Rift Valley Fever. Here we present a systematic assessment of published research on zoonotic diseases in the region and thesis research in Kenya to understand the regional research focus and trends in publications, and estimate proportion of theses research transitioning to peer-reviewed journal publications. Methods We searched PubMed, Google Scholar and African Journals Online databases for publications on 36 zoonotic diseases identified to have occurred in the East Africa countries of Burundi, Ethiopia, Kenya, Tanzania, Rwanda and Uganda, for the period between 1920 and 2017. We searched libraries and queried online repositories for masters and PhD theses on these diseases produced between 1970 and 2016 in five universities and two research institutions in Kenya. Results We identified 771 journal articles on 22, and 168 theses on 21 of the 36 zoonotic diseases investigated. Research on zoonotic diseases increased exponentially with the last 10 years of our study period contributing more than half of all publications 460 (60%) and theses 102 (61%) retrieved. Endemic diseases were the most studied accounting for 656 (85%) and 150 (89%) of the publication and theses studies respectively, with publications on epidemic diseases associated with outbreaks reported in the region or elsewhere. Epidemiological studies were the most common study types but limited to cross-sectional studies while socio-economics were the least studied. Only 11% of the theses research transitioned to peer-review publications, taking an average of 2.5 years from theses production to manuscript publication. Conclusion Our findings demonstrate increased attention to zoonotic diseases in East Africa but reveal the need to expand the scope, focus and quality of studies to adequately address the public health, social and economic threats posed by zoonoses

    Global discovery of human-infective RNA viruses:A modelling analysis

    Get PDF
    RNA viruses are a leading cause of human infectious diseases and the prediction of where new RNA viruses are likely to be discovered is a significant public health concern. Here, we geocoded the first peer-reviewed reports of 223 human RNA viruses. Using a boosted regression tree model, we matched these virus data with 33 explanatory factors related to natural virus distribution and research effort to predict the probability of virus discovery across the globe in 2010-2019. Stratified analyses by virus transmissibility and transmission mode were also performed. The historical discovery of human RNA viruses has been concentrated in eastern North America, Europe, central Africa, eastern Australia, and north-eastern South America. The virus discovery can be predicted by a combination of socio-economic, land use, climate, and biodiversity variables. Remarkably, vector-borne viruses and strictly zoonotic viruses are more associated with climate and biodiversity whereas non-vector-borne viruses and human transmissible viruses are more associated with GDP and urbanization. The areas with the highest predicted probability for 2010-2019 include three new regions including East and Southeast Asia, India, and Central America, which likely reflect both increasing surveillance and diversity of their virome. Our findings can inform priority regions for investment in surveillance systems for new human RNA viruses

    Observed Reductions in Schistosoma mansoni Transmission from Large-Scale Administration of Praziquantel in Uganda: A Mathematical Modelling Study

    Get PDF
    To date schistosomiasis control programmes based on chemotherapy have largely aimed at controlling morbidity in treated individuals rather than at suppressing transmission. In this study, a mathematical modelling approach was used to estimate reductions in the rate of Schistosoma mansoni reinfection following annual mass drug administration (MDA) with praziquantel in Uganda over four years (2003-2006). In doing this we aim to elucidate the benefits of MDA in reducing community transmission.Age-structured models were fitted to a longitudinal cohort followed up across successive rounds of annual treatment for four years (Baseline: 2003, TREATMENT: 2004-2006; n = 1,764). Instead of modelling contamination, infection and immunity processes separately, these functions were combined in order to estimate a composite force of infection (FOI), i.e., the rate of parasite acquisition by hosts.MDA achieved substantial and statistically significant reductions in the FOI following one round of treatment in areas of low baseline infection intensity, and following two rounds in areas with high and medium intensities. In all areas, the FOI remained suppressed following a third round of treatment.This study represents one of the first attempts to monitor reductions in the FOI within a large-scale MDA schistosomiasis morbidity control programme in sub-Saharan Africa. The results indicate that the Schistosomiasis Control Initiative, as a model for other MDA programmes, is likely exerting a significant ancillary impact on reducing transmission within the community, and may provide health benefits to those who do not receive treatment. The results obtained will have implications for evaluating the cost-effectiveness of schistosomiasis control programmes and the design of monitoring and evaluation approaches in general

    Zoonosis emergence linked to agricultural intensification and environmental change

    Get PDF
    A systematic review was conducted by a multidisciplinary team to analyze qualitatively best available scientific evidence on the effect of agricultural intensification and environmental changes on the risk of zoonoses for which there are epidemiological interactions between wildlife and livestock. The study found several examples in which agricultural intensification and/or environmental change were associated with an increased risk of zoonotic disease emergence, driven by the impact of an expanding human population and changing human behavior on the environment. We conclude that the rate of future zoonotic disease emergence or reemergence will be closely linked to the evolution of the agriculture–environment nexus. However, available research inadequately addresses the complexity and interrelatedness of environmental, biological, economic, and social dimensions of zoonotic pathogen emergence, which significantly limits our ability to predict, prevent, and respond to zoonotic disease emergence
    • …
    corecore