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Abstract 

RNA viruses are a leading cause of human infectious diseases and the prediction of where new 

RNA viruses are likely to be discovered is a significant public health concern. Here, we 

geocoded the first peer-reviewed reports of 223 human RNA viruses. Using a boosted 

regression tree model, we matched these virus data with 33 explanatory factors related to 

natural virus distribution and research effort to predict the probability of virus discovery across 

the globe in 2010–2019. Stratified analyses by virus transmissibility and transmission mode 

were also performed. The historical discovery of human RNA viruses has been concentrated 

in eastern North America, Europe, central Africa, eastern Australia, and north-eastern South 

America. The virus discovery can be predicted by a combination of socio-economic, land use, 

climate, and biodiversity variables. Remarkably, vector-borne viruses and strictly zoonotic 

viruses are more associated with climate and biodiversity whereas non-vector-borne and human 

transmissible viruses are more associated with GDP and urbanization. The areas with the 

highest predicted probability for 2010–2019 include three new regions including East and 

Southeast Asia, India, and Central America, which likely reflect both increasing surveillance 

and diversity of their virome. Our findings can inform priority regions for investment in 

surveillance systems for new human RNA viruses. 

Author Summary 

There is a lack of evidence on the factors driving the discovery of RNA viruses in general 

globally. Here, we recorded the initial discovery sites of all 223 human RNA virus and revealed 

its global distribution pattern. By using a machine learning method, we found that the virus 

discovery was driven by a combination of variables describing socio-economic level, land use, 

climate and biodiversity, with GDP and GDP growth found to be the two leading predictors. 

We also predicted the probability of virus discovery in 2010–2019 across the globe, and 



3 
 

identified three new areas (East and Southeast Asia, India, and Central America) in addition to 

the historical high-risk areas. The further stratified analyses (distinguishing viruses 

transmissible in humans or strictly zoonotic, and vector-borne or non-vector-borne) helped 

pinpoint the explanatory factors for the discovery of specific categories of viruses and confirm 

the plausibility of the model. The results of our study further understanding of the spatial 

distribution of human RNA virus discovery, and maps the likelihood of further discoveries 

across the world. By identifying where new viruses are most likely to be discovered in the near 

future the study helps identify priority areas for surveillance. 

Introduction 

Since the first identification of a virus in humans—yellow fever virus in 1901—viruses have 

been recognised as a leading cause of human infectious diseases [1]. Numerous human diseases, 

from the common cold [2] to life-threatening haemorrhagic fevers [3], are caused by RNA 

viruses. RNA viruses such as dengue virus, norovirus, and HIV impose significant burdens on 

global health and the global economy [4-6]. Despite the striking declines in the incidence and 

mortality of RNA virus-related diseases in human following the introduction of vaccination, 

infections due to measles virus, yellow fever virus, and Japanese encephalitis virus continue to 

endanger human health and cause hundreds to thousands of deaths each year [7-9], particularly 

in countries with limited resources to launch mass vaccination campaigns. 

Human RNA viruses comprise a total of 214 International Committee on Taxonomy of Viruses 

(ICTV)-recognised species as of July 2017, classified into 55 genera and 22 families [1]. Many 

of these—such as rabies virus, dengue virus, and measles virus—have circulated in humans for 

thousands of years [6, 9, 10], though some—such as HIV-1 and SARS coronavirus—have 

emerged much more recently. Typically, a virus is identified through investigation of the 

aetiology of a human disease (e.g. yellow fever virus [11], measles virus [12]), although some 
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have been identified during active virus discovery programmes (e.g. Rotavirus C [13], 

Parechovirus B [14]). Viruses such as hepatitis delta virus [15] and Highlands J virus [16] were 

discovered by chance, as incidental findings as part of a disease investigation. 

The discovery curve of human viruses, for both RNA viruses and DNA viruses, was described 

for the first time in 2008 [17]. Up to nine new human virus species have been detected each 

year since the 1950s, and this is projected to continue in coming decades [17]. The factors 

driving the discovery of human viruses remain to be elucidated, though two previous studies 

have identified predictors of the emergence of infectious diseases more generally [18, 19]. In 

this paper, we take a spatiotemporal modelling approach to identify explanatory factors 

influencing the discovery of RNA viruses in humans. We assume virus discovery is determined 

by two underlying spatiotemporal patterns: the geographical distribution of viruses in nature, 

and the process of virus detection—a human activity. Geographical ranges, which vary from 

worldwide (e.g. Norwalk virus [4], HIV-1 [5]) to very localised (e.g. Hendra virus [20], 

Menangle virus [21]), are mostly determined by virus natural history, vector distribution (for 

vector-borne viruses), and non-human host distribution(s) (for zoonotic viruses) [22]. In 

contrast, virus detection reflects scientific resources and research effort [18]. An uneven 

distribution of research effort will lead to an uneven distribution of virus discoveries. 

Geographical ranges and discovery effort are likely to have different drivers [23]. Previous 

studies [18, 24] have attempted to allow for variation in discovery effort, although this is hard 

to do as no direct and effective measures are available. Here, we take a different approach by 

identifying explanatory factors of the raw virus discovery data and then interpreting in the 

discussion whether these effects might relate to virus geographic range or discovery effort or 

both. 
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Materials and Methods 

Methods overview 

In this study, we followed methods and used code derived from Allen, et al [19]. We compiled 

and geocoded the first reports in the peer-reviewed literature of human infection for each RNA 

virus in our database over a period of 118 years from 1901 to 2018. A Poisson boosted 

regression tree (BRT) model—a method that handles spatially dependent data well—was fitted 

to the human RNA virus data with a set of variables thought to be potential explanatory factors. 

By matching the virus discovery count and all explanatory factors in each 1° resolution grid 

cell (approximately 110 km at the equator) by decade, we ranked the contribution of each 

explanatory factor to the predictions. We then used the parameter estimates from the best fitting 

BRT model to predict the probability of virus discovery for all grid cells across the globe in 

2010–2019 using the values of all explanatory factors in 2015. We also conducted stratified 

analyses (distinguishing viruses transmissible in humans or strictly zoonotic, and vector-borne 

or non-vector-borne) to find the explanatory factors for the discovery of specific categories of 

viruses.  

Data source of human RNA viruses and updating 

Data on human RNA viruses were derived from an updated version of our previously published 

database (https://datashare.is.ed.ac.uk/handle/10283/2970), which contains 214 viruses, with 

discovery dates between from 1901 to 2017. Search terms, databases searched, and inclusion 

or exclusion criteria for data collection was provided in our previous paper [1]. The updated 

version to 2018 includes nine additional human virus species recently recognised by ICTV or 

newly added to the database: Nairobi sheep disease orthonairovirus, Achimota virus 2, 

Menangle rubulavirus, Madariaga virus, Pegivirus H, Central chimpanzee simian foamy virus, 

Guenon simian foamy virus, Enterovirus H and Orthohepevirus C (S1 Table). The metadata 
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provide information on discovery date, transmissibility, transmission route, and host range [1]. 

We defined “discovery” as the first report of an ICTV-recognised RNA virus species from 

human(s) in the peer-reviewed literature, and the location of initial human exposure/infection 

with the virus was taken as the discovery location. When the location was not given from the 

original paper, the site of the research laboratory was used as the discovery location (n=3). If 

neither human exposure/infection location nor research laboratory site were available, the 

address of the first author was used as the discovery location instead (n=19). In our database, 

locations of initial human exposure/infection were used for 201 (90%) viruses (S1 Table) and 

none of these were contracted while travelling. The locations were georeferenced as precisely 

as possible according to the original literature, ranging from precise coordinates of points to 

polygon-level data (e.g., city, county, district, state, or country) (see S1 Text for details). For 

unspecified locations covering more than one grid cell (S2 Table), sampling was used in our 

bootstrap framework as described below. 

Spatial explanatory factors 

A set of 33 variables potentially affecting the spatial distribution of RNA virus discovery were 

collated and used as explanatory factors. Full details of sources, original resolutions, along with 

the definitions are provided in S3 Table. The variables were assigned to four groups: climatic, 

socio-economic, land use, and biodiversity. We expect GDP, GDP growth and university count 

etc. to be correlated with discovery effort as they imply more resources that could be invested 

in virus research [25, 26]. Other groups of variables including land use, climate, and 

biodiversity are more likely to be related to the natural geographic range of the virus [27], i.e. 

these variables will affect discovery via the intermediate step of emergence.  

All explanatory factors and virus locations were matched by a 1° spatial grid cell, having 

rescaled or transformed the data where necessary (details of data transformation are provided 
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in S2 Text). Our model matched the RNA virus discovery count in each grid cell with historical 

decadal climatic variables, population, GDP, and land use data (described below), so we 

extrapolated the data for these variables back to 1901 (see S2 Text for details). 

BRT modelling approach 

By fitting a Poisson BRT model, we estimated the relative risk of RNA virus discovery for 

each 1° resolution of grid cell across the world as a function of the 33 explanatory factors. BRT 

is a tree-based machine learning method beginning to be widely used in ecological studies [28, 

29]. It applies the technique of boosting to combine many simpler tree models adaptively, and 

render improved predictive performance [30, 31]. Tree-based learning methods are useful tools 

for modelling non-linear relationships and higher order interactions between variables. In 

addition, BRT handles spatially dependent data well, as it can capture complex structures 

within the data that many other modelling methods cannot [32]. We calculated Moran’s I (an 

index of spatial dependence) to estimate the ability of the BRT model to account for spatial 

dependence in the virus data, using package spdep in R v. 3.5.1 (fixed distance weights were 

generated based on spherical distance, with the cut-off values ranging from one time to thirty 

times of distance of 1° resolution grid cell at the equator, i.e. 110km to 3300km) [33]. Unlike 

the traditional, significance-based approaches, BRT assesses the individual effect of each 

variable by estimating the relative importance of each variable to the predictions. 

The bootstrap resampling approach was applied to account for spatial uncertainty in the 

location of virus discoveries and generated 95% quantiles. For viruses with imprecise discovery 

locations, one grid cell was randomly selected each time. For each grid cell with virus discovery, 

two grid cells with no discovery were randomly selected from all cells throughout the world 

that were ‘virus discovery free’ at all time points. So, in each model, 223 grid cells with virus 

discovery and 446 with no virus discovery were included. We matched the virus data with all 

explanatory factors (using the same decade for time-varying explanatory factors, e.g. 2010 
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values of variables were matched with viruses discovered in 2005-2014). We assumed that the 

virus count in any given grid cell in each decade follows a Poisson distribution, and used the 

virus discovery count in each grid cell by decade as the response variable. 

Using bootstrap resampling, we fitted 1000 replicate BRT models and generated relative 

contribution plots and partial dependence plots with 95% quantiles. The relative contribution, 

or the influence/weight, of each variable is an indicator of that variable’s importance for 

predicting virus discovery counts. The relative contributions of all variables of a BRT model 

sum to 100%, with higher numbers indicating stronger influence on the response. We defined 

the most influential explanatory factors as those whose relative contribution was greater than 

the mean level (i.e. 100/(total explanatory factors counts*100); this study: 

100/(33*100)=3.03%) [28]. Partial dependence plots are a method of visualizing the 

relationships between a BRT’s predictive variables and its outcome after accounting for the 

average effects of all other variables. The means of the predictions of all 1000 models were 

used to predict the probability of virus discovery across the globe in 2010–2019, using 2015 

values of the 33 explanatory factors. Using the equation of Poisson probability distribution, we 

converted the continuous prediction map to a probability map. We used the packages dismo 

and gbm in R v. 3.5.1 to fit BRT models. Parameters including tree complexity (reflecting the 

number of nodes in a tree), learning rate (shrinking the contribution of each added tree), and 

bag fraction (specifying the proportion of data to be selected at each step) were set following 

Elith et al. [31] to make sure each resampling model contained at least 1000 trees. The final 

parameters of the optimal model had the following values: tree complexity = 5, learning rate = 

0.003, bag fraction = 0.5. A cross-validation stagewise function was used to identify the 

optimal number of trees in each model [31]. With these parameters, the 1000 replicate BRT 

models fitted a mean of 1214 trees. 
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The model’s predictive performance was assessed by calculating the deviance of the bootstrap 

model, as well as by conducting 50 rounds of ten-fold cross-validation. Details of model 

validation are provided in the S3 Text and S4 Table. 

We also performed sensitivity analyses by i) using data from 1980 to 2000 only (as explanatory 

variables are available without extrapolation only for this period), and ii) removing the 22 

discovery reports that were not locations of infected humans (as these are less precise). Model 

parameters are provided in S5 Table. 

Stratified analysis 

Two stratified analyses were conducted to find explanatory factors specific to discoveries of 

different categories of virus. The first stratified analysis distinguished 131 viruses that are 

strictly zoonotic (all human infections are acquired from an infection in a non-human reservoir) 

and the 92 viruses that can spread within human populations (i.e. are transmissible, directly or 

indirectly, between humans) (S1 Table), based on previously published data [34]. A second 

stratified analysis was performed separately for 93 vector-borne viruses and 130 non-vector-

borne viruses (S1 Table). We used the same BRT modelling approach for stratified analyses 

as we described before, and relative contribution plots and partial dependence plots with 95% 

quantiles were drawn for each category of virus. Model parameters are provided in S5 Table. 

Based on stratified BRT models, predictions of discovery probability for each category of 

viruses in 2010–2019 were also performed by using 2015 values of the 33 explanatory factors. 

All statistical analyses were performed using R software, version 3.5.1 (R Foundation for 

Statistical Computing, Vienna, Austria), and all maps were visualised by using ArcGIS 

Desktop 10.5.1 (Environmental Systems Research Institute). The world shapefile used in the 

study was obtained from Data and Maps for ArcGIS (formerly Esri Data & Maps, 

https://www.arcgis.com/home/group.html?id=24838c2d95e14dd18c25e9bad55a7f82#overvie
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w) under a CC-BY license (S4 Text). Raw data and supporting R scripts used to generate 

figures for the full model are presented in S1 R script. 

Results 

The five regions with the highest virus count were eastern North America, Europe, central 

Africa, eastern Australia, and north-eastern South America [Fig 1(A)]. Strictly zoonotic viruses 

and vector-borne viruses were mostly discovered from central Africa and north-eastern South 

America while transmissible viruses and non-vector-borne viruses were mostly discovered 

from eastern North America and Europe (S1 Fig). The cumulative discovery count increased 

slowly before 1950s, and thereafter increased at a constant rate [Fig 1(B)]. There is variation 

for the rate of detection by geographic region (S1 Video). More viruses have been discovered 

in North America and Europe, but the numbers have decreased in recent decades. By contrast, 

an increased number of viruses have been discovered in Asia. Transmissible viruses and non-

vector-borne viruses showed a similar temporal pattern with the curve for all human RNA 

viruses, with an obvious increase in 1950 (S1 Fig). Strictly zoonotic viruses and vector-borne 

viruses showed a similar pattern in the early phase, with an obvious increase in 1925, but the 

numbers of new vector-borne viruses decreased after 1980 (S1 Fig).  

Based on the full BRT model involving all 223 viruses, twelve variables had relative 

contributions greater than the mean (3.03%) (Fig 2), including two socio-economic variables 

(GDP growth: 12.7%, GDP: 9.9%), four variables concerning urbanization [urbanized land: 

8.7%, urbanization of secondary land (i.e. the percentage of land area change from secondary 

land to urban land;  secondary land is natural vegetation that is recovering from previous human 

disturbance, see S3 Table for details): 4.8%, growth of urbanized land area: 3.6%, and 

urbanization of cropland (i.e. the percentage of land area change from cropland to urban land, 

see S3 Table for details): 3.3%], five climatic variables (minimum temperature: 6.3%, 
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precipitation change: 5.0%, latitude: 4.3%, total precipitation: 3.6%, minimum precipitation: 

3.5%), and one biodiversity variable (mammal species richness: 5.1%). The partial dependence 

plots shown in S2 Fig showed the relationships between these explanatory factors and virus 

discovery. For the majority of explanatory factors, the relationship with discovery probability 

is non-linear, with large effects often seen over a narrow range of values. For example, 

discovery probability fell sharply at if GDP growth was negative, and for very low GDP and 

low percentage of urbanized land; whereas it rose sharply for high minimum temperature and 

high mammal richness.  

Our full BRT model reduced the Moran’s I for the raw virus data from a range of 0.04–0.31 to 

0.007–0.065 (S3 Fig), indicating that this modelling method with 33 explanatory factors 

effectively removed the spatial dependence of the model residuals. Sensitivity analyses (the 

analysis using data from 1980 to 2000 and the analysis after removing the 22 viruses with least 

certain discovery locations) revealed consistent trends with the full model, though with several 

changes of relative contribution. 

In the transmissibility-stratified BRT model, ten variables had relative contributions greater 

than 3.03% for discovering strictly zoonotic viruses [Fig 3(A), partial dependence plots in S4 

Fig(A)], including four climatic variables (minimum temperature: 13.1%, latitude: 6.2%, 

precipitation change: 5.3%, total precipitation: 3.6%), three land use variables (urbanized land: 

7.7%, urbanization of secondary land: 5.6%, growth of urbanized land area: 5.2%, ), two socio-

economic variables (GDP: 8.3%, GDP growth: 7.9%), and one biodiversity variable (mammal 

species richness: 5.6%). In contrast, eight variables had relative contributions greater than 3.03% 

for discovering viruses transmissible in humans [Fig 3(B), partial dependence plots in S4 

Fig(B)], including four explanatory factors involving urbanization (urbanized land: 13.6%, 

urbanization of cropland: 9.3%, urbanization of secondary land: 6.6%, growth of urbanized 
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land area: 3.6%), three socio-economic variables (GDP growth: 14.4%, GDP: 14.0%, 

population change: 3.6%), and one climatic variable (minimum precipitation: 5.0%). 

In the vector-borne-stratified BRT model, thirteen variables had relative contributions greater 

than 3.03% for discovering vector-borne viruses [Fig 4(A), partial dependence plots in S5 

Fig(A)], including five climatic variables (minimum temperature: 17.1%, precipitation change: 

7.9%, latitude: 6.2%, total precipitation: 3.8%, maximum precipitation: 3.3%), two socio-

economic variables (GDP growth: 7.4%, GDP: 4.4%), one biodiversity variable (mammal 

species richness, 6.7%), and five land use variables (urbanization of secondary land: 4.8%, 

urbanized land: 4.1%, growth of cropland area: 3.7%, growth of urbanized land area: 3.6%, 

growth of pasture area: 3.4%). In contrast, seven variables had relative contributions greater 

than 3.03% for discovering non-vector-borne viruses [Fig 4(B), partial dependence plots in S5 

Fig(B)], including four land use variables (urbanized land: 19.6%, urbanization of secondary 

land 7.5%, urbanization of cropland: 4.5%, growth of urbanized land area: 3.5%), two socio-

economic variables (GDP: 18.7%, GDP growth: 12.4%), and one climatic variable (minimum 

precipitation: 3.3%). 

The summary of the cumulative relative contribution of each group of explanatory factors to 

human RNA virus discovery in each model is shown in Fig 5. In comparison with non-vector-

borne and human transmissible viruses, the discovery of vector-borne viruses and strictly 

zoonotic viruses is better predicted by climatic variables and biodiversity than by socio-

economic variables and land use. 

By applying 2015 values of all 33 explanatory factors (S6 Fig) to the fitted full BRT model, 

we obtained a predicted probability of human RNA virus discovery in 2010–2019 (Fig 6). 

Comparison with Fig 1 indicates that virus discoveries remain relatively likely in eastern North 

America, Europe, central Africa, eastern Australia and north-eastern South America but, in 

addition, we predict high probabilities of virus discovery across East and Southeast Asia, India 
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and Central America. All eighteen new virus species since 2010 were discovered in regions of 

high-risk as predicted by our model (75.0%–99.9% percentiles of predicted probability over 

the global range), and eleven of them were discovered in very high-risk areas (90.0-99.9% 

percentiles of predicted probability over the global range). The predictions of discovery for 

each category of virus are shown in S7 Fig. Broadly similar patterns as the full prediction 

model were seen for all four categories: high probabilities of virus discoveries are predicted in 

East and Southeast Asia, India, and Central America in comparison with the historical 

distribution (S1 Fig). However, there is some variation between virus categories: strictly 

zoonotic viruses are more likely to be discovered in northern South America, central Africa, 

and Southeast Asia, while transmissible viruses are more likely to be discovered in North 

America, East Asia, and India (S7 Fig); and vector-borne viruses are predicted to be more 

likely to be discovered in northern South America, central Africa, India, and Southeast Asia 

than non-vector-borne viruses (S7 Fig).  

Discussion 

In this study we compiled a large body of information on global spatiotemporal patterns of 

human RNA virus discovery and developed a spatiotemporal modelling framework to identify 

explanatory factors for the discovery of new viruses. The maps of human RNA virus discovery 

indicate five regions with historically high discovery counts: eastern North America, Europe, 

central Africa, eastern Australia, and north-eastern South America. BRT modelling suggests 

that virus discovery is well predicted by socio-economic variables (especially GDP and GDP 

growth), land use variables (especially those related to urbanization), climate variables 

(including minimum temperature, precipitation change, latitude, minimum precipitation, total 

precipitation), and biodiversity (especially mammal species richness). The predicted the 
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probability map in 2010–2019 identified three new areas across East and Southeast Asia, India, 

and Central America in addition to the historical high-risk areas. 

We focused on the discovery of RNA viruses in human(s) in this study, rather than emergence. 

This is determined by the attribute of the database itself, i.e. the first report of each human 

RNA virus from the literature review. The discovery location may or may not represent the 

origin of the virus. For example, HIV-1 is believed to originate from non-human primates in 

West-central Africa, and is estimated to have transferred to humans in 1920s [35], but the first 

published case from peer-reviewed literature was a Caucasian and was published by 

researchers in France [36].  

In both the full and the stratified BRT models, GDP and GDP growth were among the top 

predictors of virus discovery count. This is likely to reflect that richer, more developed areas 

have more research funding, better access to technologies for virus detection and more effective 

surveillance systems. In the United States, for example, the National Institute of Allergy and 

Infectious Diseases (NIAID) budget on emerging infectious diseases has quadrupled over the 

past decades from less than $50 million in 1994 to more than $1.7 billion in 2005 [37].  

Comparison of Fig 1 with S6 Fig suggested that more viruses have been discovered in 

developed regions with/without fast GDP growth including North America, Europe, and 

Australia. We note that more developed countries are more likely to first capture viruses 

circulating in multiple regions. Over the last 100 years, North America and Europe have 

witnessed a decreasing fraction of discovered viruses in more recent decades (1985–2018: 

32/86=37%) than previously (1901–1984: 78/137=57%), but Asia has accounted for a higher 

fraction (1901–1984: 16/137=12%; 1985–2018: 22/86=26%) (S1 Video). This can be partly 

explained by the higher GDP and faster GDP growth in Asia in recent decades. In addition, 

there have also been historical hotspots in individual countries (e.g. Brazil, Nigeria and Uganda) 

associated with active virus discovery initiatives such as those supported by the Rockefeller 
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Foundation [26]. More viruses are likely to be discovered in the near future in areas with high 

GDP growth and GDP including most of Asia (except North and Central Asia), Europe and 

North America. 

In contrast to GDP, all other explanatory factors identified in this study appear more directly 

associated with virus geographic distributions, our study having the important advantage that 

their influence is estimated independently of GDP. We note that the relative importance of 

GDP is less, though still substantial, for strictly zoonotic and vector-borne viruses (two large, 

overlapping subsets of human RNA viruses —73 out of 93 (78.5%) strictly zoonotic viruses 

are vector-borne). This likely reflects the fact that most such viruses have geographic ranges 

restricted by the distributions of their vectors and/or reservoir hosts. 

Consistent with this interpretation, explanatory factors related to urbanization—a consistently 

important category—have greatest influence for human-transmissible and non-vector-borne 

viruses. This, again, can be explained by the fact that more viruses have been discovered in 

areas (especially in Asia) which have experienced rapid urbanization in recent decades 

(especially after 1980 [38]). Population density and growth, in contrast, are much less 

prominent explanatory factors, with particularly little influence on strictly zoonotic and vector-

borne viruses. This implies that change in habitat—from natural or rural to urban [39]—has a 

greater influence on virus discovery (by altering the virus geographic distributions in nature) 

than human population size or density.  

We also found associations between the discovery of RNA viruses and climate: five of the most 

influential explanatory factors in the full model were minimum temperature, precipitation 

change, latitude, minimum precipitation, and total precipitation. That warmer and wetter 

climate (higher minimum temperature, more precipitation and lower latitude) is positively 

associated with the virus discovery is consistent with previous studies [19]. Climate variables 

(especially minimum temperature) were relatively more important predictors of vector-borne 
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and strictly zoonotic virus discovery—both these categories are more often discovered in 

tropical and sub-tropical regions. Forty two percent (93 out of 223) of human RNA species are 

vector-borne [1] and the distribution and abundance of these viruses is strongly influenced by 

the impact of climate on vector populations [18, 40]. That climate is also relatively important 

for the discovery of strictly zoonotic viruses may be at least partly explained by the fact that 

78.5% of strictly zoonotic viruses are vector-borne (S1 Table), although there may also be an 

association between climate and the distribution of reservoir hosts. 

For biodiversity, mammal species richness was shown to make an influential contribution to 

human RNA virus discovery, again particularly for vector-borne viruses and strictly zoonotic 

viruses. Most but not all previous studies have indicated that risk of spill-over for a virus from 

mammal hosts to humans is positively correlated with host species richness [18, 19, 41] which 

is consistent with mammals being the main source of zoonotic viruses [34] and that as the 

mammal species richness increases, so does the richness of the pool of viral zoonoses [42]. 

Where zoonotic viruses are first discovered will be influenced, inter alia, by a range of 

environmental, ecological and socioeconomic factors that increase the interaction between 

humans and mammal reservoirs [43]. 

Our predicted discovery map from the full model, along with two stratified models, identified 

three areas—East and Southeast Asia, India, and Central America—where more viruses were 

more likely to be detected in 2010–2019 than have been in the past. Inspection of the historical 

predicted probabilities of virus discovery in S8 Fig indicates there has always been and is still 

fewer discoveries than expected in these regions. This suggests that our model is missing 

explanatory factors (positive or negative) relevant to these regions. However, as mentioned 

before, for two predicted high-risk areas—East and Southeast Asia, India—account for higher 

fractions in more recent times. The underlying reason may be that the explanatory factors with 
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the greatest influence on virus discovery, such as GDP and land use variables related to 

urbanization, have changed substantially over time in these areas (especially China). 

This study had several limitations: firstly, as indicated above, our model is missing explanatory 

factors (positive or negative) relevant to the three newly identified high-risk regions. Second, 

there is often a lag between virus discovery and publication date, though we used the latter for 

consistency. Third, there are other potential biases concerning spatiotemporal variation in virus 

detection methodologies used, and diagnostic accuracy [1]. Fourth, we used ICTV species 

classification following other studies [44, 45], though we note that viral species for each family 

are defined by independent groups using different criteria, which may lead to over- or under-

representation of species entries for certain families in our study compared to their phylogenetic 

diversity. However, we regard ICTV taxonomy as the most authoritative for comparative 

analysis. Last, we did not attempt to correct for reporting bias by devising a plausible metric, 

though previous studies have done so [18, 19]. However, we explicitly included predictors that 

we expect to be correlated with discovery effort, e.g. GDP and university count—these are 

indirect and likely partial measures of effort.  

The strengths of the study include use of a comprehensive data set for human RNA virus 

discovery, the large set of high-resolution global variables postulated to influence RNA virus 

discovery, and a more robust model (BRT) combining the strengths of both regression trees 

and boosting that is capable of solving spatial dependence. We also performed further stratified 

analyses (distinguishing viruses transmissible in humans or strictly zoonotic, and vector-borne 

or non-vector-borne) and identified differences between explanatory factors for the discovery 

of these specific categories of viruses. These results further understanding of the spatial 

distribution of virus discovery for different types, and also demonstrate that such a method can 

be used to identify such differences between strictly zoonotic and human-transmissible viruses 

or between vector-borne or non-vector-borne viruses. 
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In conclusion, the discovery of human RNA viruses shows both spatial and temporal variation, 

and is a process associated with socio-economic variables, land use, climate, and biodiversity, 

although the relative importance of these variables differs across different category of RNA 

viruses. Our study helps distinguish the relative contributions of explanatory factors reflecting 

the natural virus distribution and those reflecting the effort invested in virus discovery to the 

spatial distribution of first reports of human viruses. New human viruses are more likely to be 

found in areas with more rapid socio-economic growth. But the underlying geographic 

distribution of viruses with the potential to infect humans may be somewhat different, 

reflecting climate, biodiversity and changes in land use. This implies that extra investment in 

virus discovery in setting that are resource-poor but have other risk factors may be warranted. 
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Figure Captions 

Fig 1. Spatiotemporal distribution of human RNA virus discovery count from 1901 to 2018. (A) Spatial 

distribution. The red spots indicate discovery points or centroids of polygons (administrative regions) – depending 

on the preciseness of the location provided by the original paper, with the size representing the cumulative virus 

species count. Centroid is the coordinate of the centre of mass in a spatial object. (B) Temporal distribution. The 

red curve indicates the cumulative virus species discovery count over time. 

Fig 2. Relative contribution of explanatory factors to human RNA virus discovery in the full model. The 

boxplots show the median (black bar) and interquartile range (box) of the relative contribution across 1000 

replicate models, with whiskers indicating minimum and maximum and black dots indicating outliers. 

Fig 3. Relative contribution of explanatory factors to human RNA virus discovery in the stratified model 

by transmissibility. (A) Strictly zoonotic, (B) Transmissible in humans. The boxplots show the median (black 

bar) and interquartile range (box) of the relative contribution across 1000 replicate models, with whiskers 

indicating minimum and maximum and black dots indicating outliers.  

Fig 4. Relative contribution of explanatory factors to human RNA virus discovery in the stratified model 

by transmission mode. (A) Vector-borne, (B) Non-vector-borne. The boxplots show the median (black bar) and 

interquartile range (box) of the relative contribution across 1000 replicate models, with whiskers indicating 

minimum and maximum and black dots indicating outliers.  

Fig 5. Cumulative relative contribution of explanatory factors to human RNA virus discovery by group in 

each model. The relative contributions of all explanatory factors sum to 100% in each model, and each colour 

represents the cumulative relative contribution of all explanatory factors within each group. The relative 

contribution of different groups to virus discovery varies across each model. 

Fig 6. Predicted probability of human RNA virus discovery in 2010–2019. The triangles represented the actual 

discovery sites from 2010 to 2018, and the background colour represented the predicted discovery probability. 

Supporting information 

S1 Fig. Spatiotemporal distribution of human RNA virus discovery count split by category from 1901 to 

2018. The map was plotted with respect to transmissibility (top left: strictly zoonotic, top right: transmissible in 

humans), and transmission mode (bottom left: vector-borne viruses, bottom right: non-vector-borne viruses). In 
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each subplot, the red spots indicate discovery points or centroids of polygons (administrative regions) – depending 

on the preciseness of the location provided by the original paper, with the size representing the cumulative virus 

species count. Centroid is the coordinate of the centre of mass in a spatial object. The red curve at the bottom left 

corner indicates the cumulative virus species discovery count over time. 

S2 Fig. Partial dependence plots for all explanatory factors that influence human RNA virus discovery in 

the full model. Partial dependence plots show the effect of an individual explanatory factor over its range on the 

response after factoring out other explanatory factors. Fitted lines represent the median (black) and 95% quantiles 

(coloured) based on 1000 replicated models. Y axes are centred around the mean without scaling. X axes show 

the range of sampled values of explanatory factors. 

S3 Fig. Moran’s I across different spherical distances. The solid line and dots represented the median 

Moran’s I value, and the grey area represented its 95% quantiles generated from 1000 samples (A: Raw virus 

data) or replicate BRT models (B: Model residuals). 

S4 Fig. Partial dependence plots for all explanatory factors that influence human RNA virus discovery in 

the stratified model by transmissibility. (A) Strictly zoonotic, (B) Transmissible in humans. Partial 

dependence plots show the effect of an individual explanatory factor over its range on the response after 

factoring out other explanatory factors. Fitted lines represent the median (black) and 95% quantiles (coloured) 

based on 1000 replicated models. Y axes are centred around the mean without scaling. X axes show the range of 

sampled values of explanatory factors. 

S5 Fig. Partial dependence plots for all explanatory factors that influence human RNA virus discovery in 

the stratified model by transmission model. (A) Vector-borne, (B) Non-vector-borne. Partial dependence 

plots show the effect of an individual explanatory factor over its range on the response after factoring out other 

explanatory factors. Fitted lines represent the median (black) and 95% quantiles (coloured) based on 1000 

replicated models. Y axes are centred around the mean without scaling. X axes show the range of sampled 

values of explanatory factors.  

S6 Fig. Distribution maps for 32 explanatory factors in 2015. The values of these explanatory variables and 

latitude in each grid cell were used to predict the virus discovery in the corresponding grid cell across the globe 

in 2010–2019. Explanatory variables were log transformed where necessary to get better visualization, not 

meaning they entered the model by logged values.  
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S7 Fig. Predicted probability of human RNA virus discovery in 2010–2019 split by category. The triangles 

represented the actual discovery sites from 2010 to 2018, and the background colour represented the predicted 

discovery probability. 

S8 Fig. Historical predicted probability of human RNA virus discovery by decade (except the first period 

with four years). The triangles represented the actual discovery sites in each decade, and the background colour 

represented the predicted discovery probability. 

S1 Table. Summary of the human RNA virus database 

S2 Table. Resolution and covered grid cells for virus discovery data 

S3 Table. List of explanatory factors included in the model 

S4 Table. Model validation statistics for stratified analyses 

S5 Table. Model parameters for sensitivity analyses and stratified analyses 

S1 Text. Georeferencing human RNA virus discovery locations 

S2 Text. Transformation of resolution for explanatory factors and data extrapolation 

S3 Text. Result of model validation  

S4 Text. Source and permission for the world shapefile used in the study 

S1 Video. The spatiotemporal pattern of human RNA virus discovery. The red spot represents the discovery 

location of each virus species over time. The red curve at the bottom-left corner represents the cumulative virus 

species count over time. 

S1 R script. A zipped file with the raw data and R code that was used for generating figures for the full 

model 


