281 research outputs found

    Glacial geomorphology of the Great Glen Region of Scotland

    Get PDF
    This paper presents a detailed glacial Main Map of the Great Glen region of Scotland, UK, covering an area of over 6800 km2 extending from 56°34′7″ to 57°41′1″ N and from 3°44′2″ to 5°33′24″ W. This represents the first extensive mapping of the glacial geomorphology of the Great Glen and builds upon previous studies that conducted localised field mapping or ice-sheet wide mapping using remote sensing. Particular emphasis is placed on deriving medium-scale glacial retreat patterns from these data, and examining differences in landsystem assemblages across the region. Features were typically mapped at a scale of 1:8000 to 1:10,000 and will be used to investigate the pattern and dynamics of the British-Irish Ice Sheet during deglaciation. Mapping was conducted using the NEXTMap digital terrain model. In total, 17,637 glacial landforms were mapped, with 58% identified as moraines, 23% as meltwater channels, 10% as bedrock controlled glacial lineations, 3% as eskers, 2% as cirques or arêtes, 2% as kame topography or kame terraces, and 1% as drumlins. Additionally, 10 palaeo-lake shorelines were identified. Complex landform assemblages in the form of streamlined subglacial bedforms, moraines and glaciofluvial features exist across the region. Extensive subglacial meltwater networks are found over the Monadhliath Mountain Range. Transverse and longitudinal moraine ridges generally arc across valley floors or are located on valley slopes respectively. Hummocky moraines are found almost exclusively across Rannoch Moor. Finally, eskers, meltwater channels and kame landforms form spatial relationships along the axis of Strathspey. These glacial landsystems reveal the dynamics and patterns of retreat of the British-Irish Ice Sheet during the last deglaciation

    Associations of inflammatory and hemostatic variables with the risk of recurrent stroke

    Get PDF
    <p><b>Background and Purpose:</b> Several prospective studies have shown significant associations between plasma fibrinogen, viscosity, C-reactive protein (CRP), fibrin D-dimer, or tissue plasminogen activator (tPA) antigen and the risk of primary cardiovascular events. Little has been published on the associations of these variables with recurrent stroke. We studied such associations in a nested case-control study derived from the Perindopril Protection Against Recurrent Stroke Study (PROGRESS).</p> <p><b>Methods:</b> Nested case-control study of ischemic (n=472) and hemorrhagic (n=83) strokes occurring during a randomized, placebo-controlled multicenter trial of perindopril-based therapy in 6105 patients with a history of stroke or transient ischemic attack. Controls were matched for age, treatment group, sex, region, and most recent qualifying event at entry to the parent trial.</p> <p><b>Results:</b> Fibrinogen and CRP were associated with an increased risk of recurrent ischemic stroke after accounting for the matching variables and adjusting for systolic blood pressure, smoking, peripheral vascular disease, and statin and antiplatelet therapy. The odds ratio for the last compared with the first third of fibrinogen was 1.34 (95% CI, 1.01 to 1.78) and for CRP was 1.39 (95% CI, 1.05 to 1.85). After additional adjustment for each other, these 2 odds ratios stayed virtually unchanged. Plasma viscosity, tPA, and D-dimer showed no relationship with recurrent ischemic stroke, although tPA was significant for lacunar and large artery subtypes. Although each of these variables showed a negative relationship with recurrent hemorrhagic stroke, none of these relationships achieved statistical significance.</p> <p><b>Conclusions:</b> Fibrinogen and CRP are risk predictors for ischemic but not hemorrhagic stroke, independent of potential confounders.</p&gt

    Effect of multipath and antenna diversity in MIMO-OFDM systems with imperfect channel estimation and phase noise compensation

    Get PDF
    The effect of phase noise in multiple-input–multiple-output systems employing orthogonal frequency division multiplexing is analyzed in a realistic scenario where channel estimation is not perfect, and the phase noise effects are only partially compensated. In particular, the degradation in terms of SNR is derived and the effects of the receiver and channel parameters are considered, showing that the penalty is different for different receiver schemes. Moreover it depends on the channel characteristics and on the channel estimation error. An analytical expression is used to evaluate the residual inter-channel interference variance and therefore the degradation. The effects of multipath and antenna diversity are shown to be different for the two types of linear receivers considered, the zero-forcing scheme and the minimum mean squared error receiver.This work has been partly funded by projects “MACAWI” TEC2005-07477-C02-02 and “MULTI-ADAPTIVE” TEC2008-06327-C03-02.Publicad

    An exceedance score for the assessment of the impact of nitrogen deposition on habitats in the UK

    Get PDF
    Large areas of nitrogen-sensitive habitats are currently estimated to be in exceedance of their critical loads (CLs) as indicators for protection from nitrogen deposition. In the UK, deposition estimates from the semi-empirical Concentration Based Estimated Deposition (CBED) model are used for official reporting of current exceedances. The UK Integrated Assessment Model (UKIAM) framework is designed to provide future projections of concentrations and deposition due to projected changes in emissions. UKIAM has been extended to provide alternative deposition estimates aligned with those of CBED, and the results combined with the range in habitat CL values to create an exceedance score, leading to a probabilistic evaluation of CL exceedances. The utility of the method is demonstrated by analysing a series of hypothetical scenarios. It is shown that NH3 mitigation is likely to be four times more effective in reducing CL exceedances in the UK than the mitigation of NOx emissions

    A systematic cross-search for radio/infrared counterparts of XMM-Newton sources

    Full text link
    We present a catalog of cross-correlated radio, infrared and X-ray sources using a very restrictive selection criteria with an IDL-based code developed by us. The significance of the observed coincidences was evaluated through Monte Carlo simulations of synthetic sources following a well-tested protocol. We found 3320 coincident radio/X-ray sources with a high statistical significance characterized by the sum of error-weighted coordinate differences. For 997 of them, 2MASS counterparts were found. The percentage of chance coincidences is less than 1%. X-ray hardness ratios of well-known populations of objects were used to provide a crude representation of their X-ray spectrum and to make a preliminary diagnosis of the possible nature of unidentified X-ray sources. The results support the fact that the X-ray sky is largely dominated by Active Galactic Nuclei at high galactic latitudes (|b| >= 10^\circ). At low galactic latitudes (|b| <= 10^\circ) most of unidentified X-ray sources (~94%) lie at |b| <= 2^\circ. This result suggests that most of the unidentified sources found toward the Milky Way plane are galactic objects. Well-known and unidentified sources were classified in different tables with their corresponding radio/infrared and X-ray properties. These tables are intended as a useful tool for researchers interested in particular identifications.Comment: Accepted for publication in Ap&SS. 47 pages, 10 figures. On-line material: figures and table

    Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence

    Get PDF
    Background: Detection of heart failure with preserved ejection fraction (HFpEF) involves integration of multiple imaging and clinical features which are often discordant or indeterminate. Objectives: We applied artificial intelligence (AI) to analyze a single apical four-chamber (A4C) transthoracic echocardiogram videoclip to detect HFpEF. Methods: A three-dimensional convolutional neural network was developed and trained on A4C videoclips to classify patients with HFpEF (diagnosis of HF, EF≥50%, and echocardiographic evidence of increased filling pressure; cases) versus without HFpEF (EF≥50%, no diagnosis of HF, normal filling pressure; controls). Model outputs were classified as HFpEF, no HFpEF, or non-diagnostic (high uncertainty). Performance was assessed in an independent multi-site dataset and compared to previously validated clinical scores. Results: Training and validation included 2971 cases and 3785 controls (validation holdout, 16.8% patients), and demonstrated excellent discrimination (AUROC:0.97 [95%CI:0.96-0.97] and 0.95 [0.93-0.96] in training and validation, respectively). In independent testing (646 cases, 638 controls), 94 (7.3%) were non-diagnostic; sensitivity (87.8%; 84.5-90.9%) and specificity (81.9%; 78.2-85.6%) were maintained in clinically relevant subgroups, with high repeatability and reproducibility. Of 701 and 776 indeterminate outputs from the HFA-PEFF and H2FPEF scores, the AI HFpEF model correctly reclassified 73.5 and 73.6%, respectively. During follow-up (median [IQR]:2.3 [0.5-5.6] years), 444 (34.6%) patients died; mortality was higher in patients classified as HFpEF by AI (hazard ratio [95%CI]:1.9 [1.5-2.4]). Conclusion: An AI HFpEF model based on a single, routinely acquired echocardiographic video demonstrated excellent discrimination of patients with versus without HFpEF, more often than clinical scores, and identified patients with higher mortality

    Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015)

    Get PDF
    Coccolithophores are key components of phytoplankton communities, exerting a critical impact on the global carbon cycle and the Earth’s climate through the production of coccoliths made of calcium carbonate (calcite) and bioactive gases. Microzooplankton grazing is an important mortality factor in coccolithophore blooms, however little is currently known regarding the mortality (or growth) rates within non-bloom populations. Measurements of coccolithophore calcite production (CP) and dilution experiments to determine microzooplankton (≤63 µm) grazing rates were made during a spring cruise (April 2015) at the Central Celtic Sea (CCS), shelf edge (CS2), and within an adjacent April bloom of the coccolithophore Emiliania huxleyi at station J2. CP at CCS ranged from 10.4 to 40.4 µmol C m−3 d−1 and peaked at the height of the spring phytoplankton bloom (peak chlorophyll-a concentrations ∼6 mg m−3). Cell normalised calcification rates declined from ∼1.7 to ∼0.2 pmol C cell−1 d−1, accompanied by a shift from a mixed coccolithophore species community to one dominated by the more lightly calcified species E. huxleyi and Calciopappus caudatus. At the CCS, coccolithophore abundance increased from 6 to 94 cells mL−1, with net growth rates ranging from 0.06 to 0.21 d−1 from the 4th to the 28th April. Estimates of intrinsic growth and grazing rates from dilution experiments, at the CCS ranged from 0.01 to 0.86 d−1 and from 0.01 to 1.32 d−1, respectively, which resulted in variable net growth rates during April. Microzooplankton grazers consumed 59 to >100% of daily calcite production at the CCS. Within the E. huxleyi bloom a maximum density of 1986 cells mL−1 was recorded, along with CP rates of 6000 µmol C m−3 d−1 and an intrinsic growth rate of 0.29 d−1, with ∼80% of daily calcite production being consumed. Our results show that microzooplankton can exert strong top-down control on both bloom and non-bloom coccolithophore populations, grazing over 60% of daily growth (and calcite production). The fate of consumed calcite is unclear, but may be lost either through dissolution in acidic food vacuoles, and subsequent release as CO2, or export to the seabed after incorporation into small faecal pellets. With such high microzooplankton-mediated mortality losses, the fate of grazed calcite is clearly a high priority research direction

    An overview of research activities and achievement in Geotechnics from the Scottish Universities Geotechnics Network (SUGN)

    Get PDF
    ABSTRACT: Design of geotechnical systems is often challenging as it requires the understanding of complex soil behaviour and its influence on field-scale performance of geo-structures. To advance the scientific knowledge and the technological development in geotechnical engineering, a Scottish academic community, named Scottish Universities Geotechnics Network (SUGN), was established in 2001, composing of eight higher education institutions. The network gathers geotechnics researchers, including experimentalists as well as centrifuge, constitutive, and numerical modellers, to generate multiple synergies for building larger collaboration and wider research dissemination in and beyond Scotland. The paper will highlight the research excellence and leading work undertaken in SUGN emphasising some of the contribution to the geotechnical research community and some of the significant research outcomes. RÉSUMÉ: Conception de systèmes géotechniques est souvent difficile car elle nécessite la compréhension du comportement des sols complexes et son influence sur la performance échelle du champ de géo-structures. Pour faire avancer la connaissance scientifique et le développement technologique en ingénierie géotechnique, une communauté universitaire écossais, nommé écossais universités Géotechnique réseau (SUGN), a été créé en 2001, la composition des huit établissements d'enseignement supérieur. Le réseau réunit géotechnique chercheurs, y compris les expérimentateurs ainsi que centrifugeuse, constitutif, et les modélisateurs numériques, de générer des synergies multiples pour la construction de plus grande collaboration et une plus large diffusion de la recherche en Ecosse et au-delà. Le document mettra l'accent sur l'excellence de la recherche et de diriger le travail entrepris dans SUGN soulignant certains de la contribution à la communauté de recherche en géotechnique et certains des résultats importants de la recherche

    20 years of the Atlantic Meridional Transect - AMT

    Get PDF
    The AMT (www.amt-uk.org) is a multidisciplinary programme which undertakes biological, chemical, and physical oceanographic research during an annual voyage between the UK and a destination in the South Atlantic such as the Falkland Islands, South Africa, or Chile. This transect of >12,000 km crosses a range of ecosystems from subpolar to tropical, from euphotic shelf seas and upwelling systems, to oligotrophic mid-ocean gyres. The year 2015 has seen two milestones in the history of the AMT: the achievement of 20 years of this unique ocean going programme and the departure of the 25th cruise on the 15th of September. Both of these events were celebrated in June this year with an open science conference hosted by the Plymouth Marine Laboratory (PML) and will be further documented in a special issue of Progress in Oceanography which is planned for publication in 2016. Since 1995, the 25 research cruises have involved 242 sea-going scientists from 66 institutes representing 22 countries. AMT was designed from the outset to be a collaborative programme. It was originally conceived by Jim Aiken, Patrick Holligan, Roger Harris, and Dave Robins with Chuck McClain and Chuck Trees at NASA to test and ground truth satellite algorithms of ocean color. The opportunities offered by this initiative meant that this series of repeated biannual cruises rapidly developed into a coordinated study of ocean biodiversity, biogeochemistry, and ocean/atmosphere interactions

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
    corecore