

A Glacial Geomorphological Map of the Great Glen Region of Scotland

Journal:	Journal of Maps
Manuscript ID:	TJOM-2013-0052
Manuscript Type:	Original Article
Date Submitted by the Author:	20-May-2013
Complete List of Authors:	Turner, Andrew; Northumbria University, Woodward, John; Northumbria University, Stokes, Chris; Durham University, Cofaigh, Colm; University of Durham, Geography Dunning, Stuart; Northumbria University,
Keywords:	Great Glen, Geomorphology, British-Irish Ice Sheet, Deglaciation

SCHOLARONE[™] Manuscripts

Journal of Maps

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
40 40	
40	
41 10	
40 70	
49 50	
50 51	
51 52	
52 52	
53 57	
54	
50	
50	
51 52	
50 50	

1 A Glacial Geomorphological Map of the Great Glen Region of Scotland 2 Andrew J. Turner^{1, a}, John Woodward¹, Chris R. Stokes², Colm Ó Cofaigh², Stuart Dunning¹ 3 4 ¹ Faculty of Engineering and Environment, Department of Geography, Northumbria University, Ellison 5 Place, Newcastle-Upon-Tyne, NE1 8ST, UK ² Department of Geography, Durham University, South Road, Durham, DH1 3LE, UK 6 7 ^a a.j.turner@northumbria.ac.uk 8 9 Abstract 10 This paper presents a detailed glacial geomorphological map of the Great Glen region of 11 Scotland, UK, covering an area of over 6,800 km² extending from 56°34'7" to 57°41'1" N and from 12 3°44'2" to 5°33'24" W. This represents the first extensive mapping of the glacial geomorphology of the 13 Great Glen and builds upon previous studies that conducted localised field mapping or ice-sheet wide 14 mapping using remote sensing. Particular emphasis is placed on deriving medium-scale glacial 15 retreat patterns from these data, and examining differences in landsystem assemblages across the 16 region. Features were typically mapped at a scale of 1:8,000 to 1:10,000 and will be used to 17 investigate the pattern and dynamics of the British-Irish Ice Sheet during deglaciation. Mapping was 18 conducted using the NEXTMap digital terrain model. In total, 17,637 glacial landforms were mapped, 19 with 58% identified as moraines, 23% as meltwater channels, 10% as bedrock controlled glacial 20 lineations, 3% as eskers, 2% as circues or arêtes, 2% as kame topography or kame terraces, and 1% 21 as drumlins. Additionally, ten palaeo-lake shorelines were identified. Complex landform assemblages

- 22 in the form of streamlined subglacial bedforms, moraines and glaciofluvial features exist across the
- region. Extensive subglacial meltwater networks are found over the Monadhliath Mountain Range.

24 Transverse and longitudinal moraine ridges generally arc across valley floors or are located on valley

- 25 slopes respectively. Hummocky moraines are found almost exclusively across Rannoch Moor. Finally,
- 26 Eskers, meltwater channels and kame landforms form spatial relationships along the axis of

27 Strathspey. These glacial landsystems reveal the dynamics and patterns of retreat of the British-Irish

28 Ice Sheet during the last deglaciation.

29

30

60

Keywords: Great Glen, Geomorphology, British-Irish Ice Sheet, Deglaciation

31 1. Introduction

Glacial landforms are key ingredients for reconstructing the past extent and dynamics of the former British-Irish Ice Sheet (BIIS), which extended across much of Britain and Ireland, and reached the continental shelf edge during the last glaciation about 24,000 years ago (Bowen et al., 2002; Sejrup et al., 2005; 2009; Bradwell et al., 2008a; Chiverrell and Thomas, 2010; Clark et al., 2012). In Scotland, coastal and onshore geomorphology (e.g. Thorp, 1986; Firth, 1989a, b; Merritt et al., 1995; Finlayson, 2006; Finlayson et al., 2010) have been extensively employed to reconstruct flow paths and retreat patterns. The limits of the Younger Dryas (YD) readvance (12.9-11.7 ka BP) are also well known (e.g. Sissons, 1979a; Bennet and Boulton, 1993a; Clark et al., 2004). Terrestrial evidence suggests the configuration of the BIIS was complex and that the ice sheet was characterised by at least four areas of major ice streaming located at the Moray Firth, The Minch, along the eastern coast of England and within the Irish sea basin. These were zones of high flow velocity which drained large volumes of ice from the ice sheet's interior (e.g. Merritt et al., 1995; Bradwell et al., 2008b; Hughes et al., 2010; Clark et al., 2012). Less attention has been given to synthesising terrestrial limits and medium-scale retreat patterns between offshore/coastal and YD ice margin positions. Whilst there are a number of site specific studies of moraines, glaciofluvial landforms, and streamlined subglacial bedforms in Scotland (e.g. McCann, 1966; Peacock, 1971; Young, 1978; Firth, 1989a; Golledge, 2006; Livingstone et al., 2008), the glacial landforms across large sectors of the Scottish landscape have yet to be systematically mapped. In the Great Glen (GG) and surrounding region a paucity of detailed mapping has precluded an

accurate reconstruction of ice sheet retreat from the Scottish coast to the YD maximum extent
 positions mapped by Clark *et al.*, 2004. However, recent research in the Monadhliath Mountain Range
 has suggested that ice cover between ~15 ka BP and 11.7 ka BP was more extensive than previously
 thought (Boston *et al.*, 2013).

The accompanying geomorphological map covers a region of 6,828 km² centred on the Great Glen in Scotland. This builds upon previous mapping efforts (e.g. Clark *et al.*, 2004; Hughes *et al.*, 2010) and is part of ongoing research into the nature of deglaciation through the Great Glen sector of the BIIS including subaqueous geophysical surveys of the lochs in the region (e.g. Turner *et al.*, 2012; 2013a, b).

61 2. Methods

62 2.1 Data Sources

The geomorphological map of the Great Glen region has been produced from high-resolution Intermap Technologies NEXTMap digital terrain data which has a horizontal resolution of 5 m and vertical resolution of 1 m. ESRI ArcGIS 9.3 software was used during mapping procedures. An orthogonally illuminated hillshade of the study area was produced (Smith and Clark, 2005). As lineations on the land surface have a predominant south-west/north-east trend, the digital elevation model was initially shaded from an azimuth perpendicular to their orientation (north-west: 315°). To reduce the bias associated with hillshading from a single solar azimuth, a second relief map was produced with a perpendicular north-east (45°) azimuth (e.g. Smith and Clark, 2005). A solar elevation angle of 45° was selected for these images to reveal subtle topography within the study area. To further reduce azimuth biasing, a shaded relief image with an illumination angle of 90° (vertical) was also produced, as suggested by Smith and Clark, (2005).

Additional contextual data from Ordnance Survey MasterMap, available from the Edina ShareGeo website (http://edina.ac.uk/projects/sharegeo/index.shtml), at a scale of 1:2,000 were also used. These data allowed roads, buildings, managed woodland, railway lines, rivers/streams, tree cover and landforms pertinent to this study to be identified. A base map for the remainder of Scotland is provided by NASA Shuttle Radar Topography Mission (SRTM) data, available at http://www2.jpl.nasa.gov/srtm/. This layer is not used in mapping procedures due to its low resolution (90 m - Farr et al., 2007) and vertical elevation errors (5 m - Rodriguez et al., 2005). All map layers were displayed using the British National Grid (OSGB 1936 datum) and projected to the Transverse Mercator, airy spheroid.

84 2.2 Mapping Procedure

The glacial geomorphological map was generated by visually identifying features of glacial origin from the relief shaded images described above. Across the area 17,637 individual glacial features were systematically located and classified according to common morphological descriptions (see section 3). Landforms were digitised within ArcGIS 9.3 software as colour coded polyline data at a scale of between 1:8,000 and 1:10,000. In cases where a landform was tentatively identified in the imagery, but lacked pronounced relief or was otherwise difficult to see, ESRI ArcScene 9.3 3D visualisation software was used to aid in scrutinising landforms. This helped classify the exact feature
type, or allowed a feature to be rejected as unimportant to the study (e.g. roads, electrical pylons,
buildings).

Whilst previous mapping has identified a wealth of glacial landforms such as bedrock controlled glacial features (e.g. Peacock et al., 1992; Hughes et al., 2010), drumlins (Hughes et al., 2010) meltwater channels (e.g. Gordon, 1993; Greenwood et al., 2007; Margold and Jansson, 2012), eskers (e.g. Young, 1978; Key, 1997), kame features (e.g. Young, 1978; May and Highton, 1998; Russell and Marren, 1998), moraines (e.g. Bennett and Boulton, 1993a, b; Benn and Lukas, 2006; Dunlop and Clark, 2006a, b; Smith et al., 2006) and ice dammed palaeo-lake shorelines (e.g. Sissons, 1977b; 1979a, c; Palmer et al., 2010); a new map was required that covers a regional area and synthesises these data at the medium-scale. The descriptions of landforms given in the above references have also provided criteria for identification of previously unmapped glacial landforms in the region. Where a landform was confirmed from visual identification of the relief imagery they were included on the final geomorphological map. The source references for such features were added to the attribute table entry during mapping. It is estimated that 80% of the landform record presented in the glacial geomorphological map has not been identified previously.

All features were further subdivided into 3 'certainty categories' (cf. Greenwood, 2007). Category 1 ('definite') denotes a given landform possesses most of the characteristic attributes described in the literature for that landform type. Category 2 ('probable') refers to those landforms which are most likely of a particular feature type but some uncertainty remains as not all classic characteristics may be present. The final category 3 ('possible') landforms display only a few of the typical characteristics of its type or, alternatively, possess characteristics of two or more landform types and could potentially be misidentified. Category 3 landforms are omitted from the final geomorphological map. Statistical information for each landform type was drawn from examples classified as 'definite' or 'probable' (Table 1).

A short ground truthing field excursion was also conducted to verify several landform types.
Locations included the northern and southern shores of Loch Ness, several locations within the
Monadhliath Mountain Range and Glen Roy.

The palaeo-shorelines of ice dammed lakes, which previously occupied glens, were produced
by first identifying the palaeo-shoreline from the hillshaded NEXTMap data based on descriptions by

Journal of Maps

3	
4	
5	
6	
7	
<i>i</i>	
8 Q	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
20	
20	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
10	
40	
41	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	

60

121 Sissons (1977b; 1979a, c) and Palmer et al. (2010). Where the surface elevation of a palaeo-122 shoreline was known, an isoline of the appropriate elevation above sea-level was generated in the 123 GIS using a geoprocessing tool in order to keep elevation error to a minimum. The extent of the 124 resulting palaeo-lake was therefore delineated primarily by topography, but also from associated 125 moraine limits. A caveat to this is that the NEXTMap digital elevation model retains all natural and 126 anthropogenic features in addition to the relief of the land surface; therefore where the lake shores 127 disappear under tree cover, the mapping algorithm would map tree elevation instead of palaeo-128 shoreline elevation. Forested areas are therefore omitted from the elevation analysis. Glacio-isostatic 129 adjustment is not accounted for, but given the relatively small size of the lakes, this is unlikely to be a 130 problem.

131

132 3. Glacial Geomorphology

133 3.1 Cirques/Arêtes

134 Cirgues are erosional hollows in mountainous terrain with concave slopes bounded upstream 135 by a sharp arcuate headwall and sharp valley side ridges (arêtes) (Gordon, 2001; Evans, 2006) and 136 are flat floored and open at the downstream end (Evans and Cox, 1974; Benn and Evans, 2010) (Fig. 137 2a, b). In the Great Glen region, clusters of circues exist in the vicinities of Loch Ericht, Ben Nevis 138 Mountain Range, Loch Arkaig, Loch Loyne and Loch Affric (Fig. 1). These locations lie within YD ice 139 cap limits as defined by Clark et al. (2004). Three clusters of circues occur outside the YD limit in 140 proximity to Loch Laggan, Strathossian and Strathconnon (Fig. 1). It should be noted that the YD ice 141 limits presented here are based on Clark et al. (2004). However, recent work in the Monadhliath 142 Mountain Range suggests a more extensive ice limit during the YD cold event (Boston et al., 2013). 143

144 3.2 Streamlined bedrock

Streamlined bedrock features are highly elongate, (e.g. Table 1) ice flow parallel landforms
(Bradwell *et al.*, 2008b), possessing sharp crest lines in cross-profile and gentle long-profile
morphology (Jansson *et al.*, 2003). The highest concentration occurs over the mountainous areas
surrounding Loch Ness (e.g. Fig. 2c, d); other concentrations are located on the western side of
Strathspey and on peaks overlooking Glens Moriston, Roy and Spean. These fields of streamline

150	bedrock ridges predominantly occur outside the YD ice limit. Within the YD limit, the streamlined
151	features are located in the vicinities of Lochs Aber, Affric, Garry, Loyne (Fig. 1).
152	
153	3.3 Crags and Tails
154	Crags and tails are ice moulded bedrock outcrops with indistinct or sharp crests and a leeward
155	tail/ridge of unlithified material (usually till) tapering in the direction of ice flow (Smith et al., 2006;
156	Greenwood and Clark, 2008; Hughes et al., 2010) (Fig. 2c, d). They are have a relatively high
157	elongation ratio (Table 1) and are found outside the YD ice limits over elevated terrain, and surround
158	the northern portion of Loch Ness. Other fields are found in proximity to Glen Affric, Strathconnon, the
159	Clava river valley, and on peaks overlooking Strathspey (Fig. 1). Additionally, the northern Affric/Ness
160	clusters surround the peripheries of drumlin fields discussed below.
161	
162	3.4 Drumlins
163	Drumlins are streamlined, commonly described as asymmetric, ovoid hills aligned parallel to ice
164	flow with gentle stoss and lee slopes which may also be spindle-like, parabolic or barchanoid in
165	planview (Mitchell and Riley, 2006; Smith et al., 2006; Greenwood and Clark, 2008; Hughes et al.,
166	2010). In this region, they are more elongate when compared to other types of glacial lineations
167	(Table 1). They encircle the northern and eastern shores of Loch Ness, and they surround the
168	northern and southern shorelines of Beauly Firth and west of Cromarty Firth.
169	
170	3.5 Transverse moraines
171	Transverse moraines are ridges deposited perpendicular to ice flow which may be single ridges
172	or broken into linear chains arcing across valley floors (Sissons, 1979c, Benn and Lukas, 2006;
173	Golledge, 2006; Smith et al., 2006). The mean length of transverse moraines has been calculated to
174	be ~128 m (Table 1). A characteristic cluster has been identified at the Blackwater Reservoir (Fig. 3a,
175	b). Other fields occur in glens adjacent to Lochs Arkaig, Cluanie, Eil and Quioch with two further
176	clusters located in Glen Spean and north-east of Loch Ness (Fig. 1).
177	
178	3.6 Longitudinal (ice flow parallel) moraines

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

(Fig. 1).

3.9 Kame topography

3.7 Ribbed moraine

3.8 Hummocky terrain

1 2

Journal of Maps

Longitudinal moraines occur laterally on valley slopes (lateral moraines) (Sissons, 1979c), on

valley floors running parallel to the valley long axis and former ice flow (Benn and Evans, 2010), or

extend from central ridges at the confluence of adjacent valleys, showing where two separate glacier

systems have merged into one coherent ice mass flowing down-valley (medial moraines) (e.g.

Spagnolo and Clark, 2009). They are frequently asymmetrically distributed across opposing valley

slopes (Sissons, 1979c). They have also been calculated to possess a slightly longer mean length

than transverse moraines, measured at ~149 m (Table 1). A large population is found at the northern

end of Loch Ness and close to Foyers, with examples found at the YD limit in Glen Moriston. Further

Ribbed moraine consist of curved, closely spaced ridges aligned transverse to ice flow with a

Hättestrand and Kleman, 1999; Dunlop and Clark, 2006a, b) (Fig. 3e, f). They may have multiple sub-

crests or singular flat apexes (Dunlop and Clark, 2006a, b; Hughes et al., 2010). Ribbed moraines are

exclusively found surrounding the southern tip of the Cromarty Firth, deposited above a 40 m palaeo-

possess the greatest mean length (measured perpendicular to ice flow direction), at ~243 m (Table 1).

Hummocky terrain is defined as irregular mounded topography which exhibits varying degrees

of order; ranging from unordered (chaotic) assemblages to suites of nested linear elements (Sissons,

1976; Smith et al., 2006). Hummocky terrain commonly occurs in localised depocentres in the form of

broad and low ridges in the landscape, which may grade into till sheets (Key, 1997). The largest

population was observed in the Rannoch Moor area with other concentrations located in western

Strathspey, in the vicinities of Lochs Lochy, Eil and Quioch, and west of the YD ice limit in Glen Affric

sea level shoreline mapped by Firth (1989a) with few examples below this (Fig. 3e, f). They also

fields are found in proximity to Lochs Arkaig and Ossian, and across Rannoch Moor (Fig. 1).

characteristic anastomosing pattern or 'ribbing' (Lundqvist, 1989; Aylsworth and Shilts, 1989;

2	
3	
4	
5	
6	
7	
8	
å	
3	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
10	
40	
42	
43	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
54	
55	
56	
50	
ວ/ 52	
58	
59	
60	

Kame and kettle topography are assemblages of mounds and hollows generated through supraglacial or ice contact glaciofluvial deposition which may also represent zones of in situ ice stagnation, wastage, ice-block meltout or jökulhlaups (Sissons, 1976; 1979c; Young, 1978; Russell and Marren, 1998; Fay, 2002; Gordon and McEwen, 1993) (Fig. 4a, b). The largest field is located on the western slopes of Strathspey with another series of features found at the Auchteraw Terrace, close to Fort Augustus (Fig. 1). Another field exists at the head of Loch Treig (Fig. 1). 3.10 Kame terraces Kame terraces are gently sloping depositional benches perched on valley sides, and are related to the lateral deposition of glaciofluvial outwash (Evans, 2005); or possibly outwash deposition in ice marginal ribbon lakes (Benn and Evans, 2010). They often occur in series and have differing gradients relating to former ice margin morphology (Fletcher et al., 1996; Benn and Evans, 2010). The largest concentration occurs in Glen Moriston on the slopes on either side of the modern river within the YD ice limit. Also within the ice limit, kame terrace fragments are identified north of Loch Treig (Sissons, 1979c) (Fig. 1). Outside of the YD limit, in Strathspey, terrace fragments are observed north of Newtonmore (Young, 1978) and in the northern Findhorn river valley (Fletcher et al., 1996). 3.11 Lateral meltwater channels Lateral meltwater channels develop parallel to ice margin surfaces and erode distinct lateral or arcuate 'grooves' or benches into the topography during deglaciation (Dyke et al., 1992; Kleman et al., 1992; Dyke, 1993; Hättestrand, 1998; Hättestrand and Stroeven, 2002; Sollid and Sørbel, 1994; Smith et al., 2006; Greenwood et al., 2007). Outside the YD ice limit, channels are located at the peripheries of Loch Ness and valleys in the Monadhliath Mountain Range (Fig. 1). Within the ice limit, concentrations are found at Lochs Arkaig, Laggan and Ossian, and surround Leum Uilleim (Fig. 4e, f). Statistical information obtained from all meltwater channel types are presented in Table 1. 3.12 Sublateral meltwater channels Sublateral channels typically have greater angles of dip on the land surface than lateral examples and often occur in series at elevations below major longitudinal moraine ridges and in some instances plunge through down slope chutes or fissures (Sissons, 1967; Greenwood et al., 2007).

Journal of Maps

238	Concentrations exist in Glen Moriston, over Leum Uilleim, and at Urquhart Bay and Foyers, Loch
239	Ness (Fig. 1).
240	
241	3.13 Subglacial meltwater channels
242	Subglacial channels can form in an upslope flow direction and may overtop mountainous
243	peaks/ridges and erode directly into bedrock, due to controls imparted by ice flow direction and
244	hydrostatic pressures (Sissons, 1967; Nye, 1973; Young, 1978; Sharpe and Shaw, 1989; Sugden et
245	al., 1991; Kleman and Borgström, 1996; Kleman et al., 1997; Hättestrand and Stroeven, 2002). They
246	may also preferentially erode into faults in bedrock surfaces and display anastomosing or braided
247	patterns (Margold and Jansson, 2012). The highest density is found over the Monadhliath Mountain
248	Range and on the elevated terrain between Loch Ness and Glen Affric (Fig. 1). These areas are
249	located outside of the YD ice limit. Within the ice limit small clusters are located on the flanks of Leum
250	Uilleim, Loch Treig and Loch Eil (Fig. 1).
251	
252	3.14 Proglacial meltwater channels
253	Proglacial channels are formed at the termini of glaciers and ice sheets which can form braided
254	and branching channel networks in the proglacial zone (Benn and Evans, 2010). They often rapidly
255	erode pre-existing channels or down-cut into bedrock surfaces and may be difficult to distinguish from
256	modern drainage channels, or, if channels are of low relief, they may have a very weak signature on
257	the land surface (Benn and Evans, 2010; Margold et al., 2011). Only three features have been
258	confirmed as proglacial channels. These are located in the Glen Roy area, eroded through a series of
259	transverse moraines and into the top of a proglacial fan complex known as the Glen Turret Fan (Chen
260	and Rose, 2008).
261	
262	3.15 Over-col spillway channels
263	Over-col spillways (Fig. 4f) are deep channels or gorges incised into bedrock which are often
264	found in association with former ice dammed lakes (Margold and Jansson, 2012). Four of the
265	spillways are associated with the former ice dammed lakes in Glens Spean, Roy and Gloy, with
266	further spillways located near Beinn a'Bha'ach Ard and Sgurr na Ruaidhe between Strathconnon and
267	Strathfarrar and at Leum Uilleim (Fig. 1).

269	
200	
209	3. To Eskers
270	Eskers are well-defined, sub-linear to sinuous hoges which may have smooth or sharp crests
271	and are often associated with lakes, kame and kettle topography. They typically trend in the direction
272	of former meltwater flow which may not necessarily be the same as the regional ice flow direction
273	(Smith <i>et al.</i> , 2006; Margold and Jansson, 2012). They can form supraglacially, englacially or
274	subglacially (Banerjee and McDonald, 1975) via sustained deposition over long timescales or via
275	single high-magnitude events (jökulhlaups) (Burke <i>et al.</i> , 2008; 2010). Eskers are observed in
276	proximity to Glens Moriston and Spean, Strathossian, and on slopes overlooking Lochs Ericht, Lochy,
277	Oich, and Treig. Elsewhere, eskers are found in the vicinities of Strathspey, Loch Laggan and the
278	Clava and Findhorn river valleys. A small number of eskers located at the northern end of Loch Ness
279	are larger in scale.
280	
281	3.17 Paleo-lake shorelines
282	Palaeo-lake shorelines are laterally continuous valley side terraces, notches or benches that
283	are the result of wave erosion and beach deposition at a former long-lived palaeo-water-level which
284	also often occur in series (Darwin, 1839; Sissons, 1977a; 1978; Sissons and Cornish, 1982; Chen
285	and Rose, 2008; Margold and Jansson, 2012). Six shorelines are identified in Glen Doe at 510 m, 406
286	m, 359 m, 334 m, 324 m and 305 m above sea-level (a.s.l.) (Fig. 5a-f). A 355 m a.s.l. shoreline is
287	identified in Glen Gloy and crosses two sets of transverse moraine deposited within the valley bottom,
288	resulting in possible minimum and maximum extents (Fig. 5g, h). Three are traced in Glen Roy where
289	they are laterally extensive and occur at 350 m, 325 m and 260 m a.s.l. (Fig. 5i-k). The 260 m a.s.l.
290	shoreline is also traced in Glen Spean (Fig. 5j, k).
291	
292	4. Conclusions
293	The map accompanying this article is the first detailed map of the glacial geomorphology of the
294	Great Glen region of Scotland. This map builds upon and extends previous work by both field
295	researchers, cartographers and the BRITICE data set by synthesising small-scale mapping efforts at
296	the medium-scale, including previously unmapped landform assemblages, to produce a detailed

297 regional pattern of glacial landforms which can be used to reconstruct the dynamics and retreat

Journal of Maps

3		
4		
5		
6		
7		
í o		
8		
9		
1	0	
1	1	
1	2	
1	3	
1	<u>ک</u>	
1	- 5	
1	0 6	
1	0	
1	1	
1	8	
1	9	
2	0	
2	1	
2	2	
ົ	<u>~</u> っ	
~	3	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
2	ñ	
ວິ	∪ ₄	
ა ი	1	
3	2	
3	3	
3	4	
3	5	
3	6	
R	7	
2	à	
ິ	0	
3	9	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
ľ	6	
+ 1	7	
4	1	
4	8	
4	9	
5	0	
5	1	
5	2	
5	3	
5 5	1	
ე ი	+ _	
о -	5	
5	6	
5	7	
5	8	
5	q	

patterns of the former BIIS in this sector of Scotland. Complex landform assemblages exist across the
study area especially on the eastern side of the Great Glen, where a larger number of landforms
appear to have been preserved. In total 17,637 individual features were mapped in the 6828 km²
study area; 58% of these are moraine, 23% are meltwater channels, 10% are bedrock lineations, 3%
are eskers, 2% are cirques or arêtes, 2% are kame and kettles or kame terraces and 1% are
drumlins.

304 Where mountainous areas are present, glacial erosion has produced cirgues, marking initial 305 accumulation areas and final deglacial enclaves of the former ice cover in Scotland. Over elevated 306 ground, streamlined bedforms dominate, with drumlins occupying lower ground to the north-east. 307 Extensive subglacial meltwater networks are found over the Monadhliath Mountain Range. Across low 308 elevation terrain in the southern extremity of the study area, in western Rannoch Moor, moraine 309 ridges are the prevailing landforms. Transverse and longitudinal moraine ridges are generally located 310 across valley floors or deposited on valley slopes respectively dispersed across the study area. 311 Longitudinal moraines additionally share a spatial relationship with lateral meltwater channels along 312 the axis of the Great Glen. Eskers, meltwater channels and kame landforms also form spatial 313 relationships along the axis of Strathspey.

The glacial geomorphological map accompanying this paper synthesises morphological data in order to examine the nature of glaciation in the Great Glen region and the potential evidence of fast flow (ice streaming). Particular emphasis is placed on deriving regional glacial retreat patterns, and finally, examining any differences in morphology or landsystem assemblages occurring within the Younger Dryas ice cap limits.

319

320 5. Software

Relief shaded visualisations of the NEXTMap dataset and onscreen digitisation of landforms were done using ESRI ArcGIS 9.3 software. The 3D visualisation tool of ArcScene 9.3 was used to aid assessment of landform features where this was difficult in the planview of ArcGIS 9.3. The final geomorphological map was produced in ArcGIS 9.3 and exported as a PDF document.

325

60

326 6. Acknowledgements

The authors would like to thank Dr. Ian S. Evans of Durham University in helping to find the relevant BGS map sheets for the study area (BGS, 1995; 1997; 2000). We would also like to thank Dr. Mike Lim of Northumbria University for providing Intermap Technologies NEXTMap data for the study area and Dr. Clare M. Boston of Exeter University for fruitful discussions on the landforms of the Monadhliath Mountain Range. 7. Map Design All glacial landforms were mapped as a series of polyline data, colour coded to feature type for expedient mapping. For meltwater channels, kame features and moraines different colours were also used to differentiate between sub-types (e.g. dark blue for subglacial meltwater channels and lighter blues for lateral and sublateral types). Mapped landforms were overlaid on various hillshaded renditions of the NEXTMap data and coloured white to emphasise the topography of the area and to aid clarity of individual features. Place names were kept to an absolute minimum on the final geomorphological map to avoid cluttering the map and obscuring geomorphological features. This accompanying paper contains a figure with all relevant place names mentioned in the text. 8. References AYLSWORTH, J. & SHILTS, W. (1989), 'Bedforms of the Keewatin Ice Sheet, Canada.', Sedimentary Geology 62, 407-428. BANERJEE, I. & MCDONALD, B. (1975), Nature of Esker Sedimentation, In: JOPLING, A. & MCDONALD, B., ed., Glaciofluvial and Glacio-lacustrine Sedimentation, Special Publication 23, Society of Economic Palaeontologists and Mineralogists, pp. 132-154. BENETTI, S., DUNLOP, P. & O COFAIGH, C. (2010), 'Glacial and glacially-related features on the continental margin of northwest Ireland mapped from marine geophysical data', Journal of Maps v2010, 14-29. BENN, D. & EVANS, D. (2010), Glaciers and Glaciation (2nd Edition), Hodder, London. BENN, D. & LUKAS, S. (2006), 'Younger Dryas glacial landsystems in North West Scotland: an assessment of modern analogues and palaeoclimatic implications', Quaternary Science Reviews 25, 2390-2408. BENNETT, M. & BOULTON, G. (1993a), 'Deglaciation of the Younger Dryas or Loch Lomond Stadial

Page 13 of 26

1

Journal of Maps

0		
2 3	357	icefield in the northern Highlands, Scotland', Journal of Quaternary Science 8, 133-145.
4 5	358	BENNETT, M. & BOULTON, G. (1993b), 'A reinterpretation of Scottish ' hummocky moraine' and its
6 7	359	significance for the deglaciation of the Scottish Highlands during the Younger Dryas or Loch
8 9	360	Lomond Stadial', Geological Magazine 130, 301-318.
10 11	361	BOSTON, C.M., LUKAS, S., MERRITT, J.W. (eds.) (2013). The Quaternary of the Monadhliath
12	362	Mountains and Great Glen, Field Guide. Quaternary Research Association, London.
13	363	BOWEN, D., PHILLIPS, F., MCCABE, A., KNUTZ, P. & SYKES, G. (2002), 'New data for the Last
15 16	364	Glacial Maximum in Great Britain and Ireland', Quaternary Science Reviews 21, 89-101.
17 18	365	BRADWELL, T., STOKER, M. & KRABBENDAM, M. (2008b), 'Megagrooves and streamlined bedrock
19 20	366	in NW Scotland: The role of ice streams in landscape evolution', Geomorphology 97, 135-156.
21 22	367	BRADWELL, T., STOKER, M., GOLLEDGE, N., WILSON, C., MERRITT, J., LONG, D., EVEREST, J.,
23	368	HESTVIK, O., STEVENSON, A., HUBBARD, A., FINLAYSON, A. & MATHERS, H. (2008a),
25	369	'The northern sector of the last British Ice Sheet: maximum extent and demise', Earth Science
20	370	<i>Reviews</i> 88 , 207-226.
28 29	371	BRITISH GEOLOGICAL SURVEY (1995), Glen Roy, Scotland Sheet 63W, British Geological Survey,
30 31	372	Keyworth, Nottingham.
32 33	373	BRITISH GEOLOGICAL SURVEY (1997), Fortrose, Scotland Sheet 84W, British Geological Survey,
34 35	374	Keyworth, Nottingham.
36 37	375	BRITISH GEOLOGICAL SURVEY (2000), Dalwhinnie, Scotland Sheet 63E, British Geological
38	376	Survey, Keyworth, Nottingham.
40	377	BURKE, M., WOODWARD, J., RUSSELL, A., FLEISHER, P. & BAILEY, P. (2010), 'The sedimentary
41 42	378	architecture of outburst flood eskers: A comparison of ground-penetrating radar data from
43 44	379	Bering Glacier, Alaska and Skeiðarárjökull, Iceland', Geological Society of America Bulletin
45 46	380	122 , 1637-1645.
47 48	381	BURKE, M., WOODWARD, J., RUSSELL, A., FLEISHER, P. & BAILEY, P. (2008), 'Controls on the
49 50	382	sedimentary architecture of a single event englacial esker: Skeiðarárjökull, Iceland', Quaternary
51 52	383	<i>Science Reviews</i> 27 , 1829-1847.
52	384	CHEN, CY. & ROSE, J. (2008), Assessment of remote sensed imagery on the analysis of landforms
54 55	385	in Glen Roy, In: PALMER, A., LOWE, J. & ROSE, J., ed., The Quaternary of Glen Roy and
56 57	386	Vicinity, Field Guide, Quaternary Research Association, London, pp. 36-45.
58 59		
60		13

3	387	CHIVERRELL, R. & THOMAS, G. (2010), 'Extent and timing of the Last Glacial Maximum (LGM) in
4 5	388	Britain and Ireland: a review', Journal of Quaternary Science 25, 535-549.
6 7	389	CLARK, C., EVANS, D., KHATWA, A., BRADWELL, T., JORDAN, C., MARSH, S., MITCHELL, W. &
8 9	390	BATEMAN, M. (2004), 'Map and GIS database of landforms and features related to the last
10	391	British Ice Sheet', <i>Boreas</i> 33, 359-375.
11	392	CLARK, C., HUGHES, A., GREENWOOD, S., JORDAN, C. & SEJRUP, H. (2012), 'Pattern and timing
13 14	393	of retreat of the last British-Irish Ice Sheet', Quaternary Science Reviews 44, 112-146.
15 16	394	DARWIN, C. (1839), 'Observations on the parallel roads of Glen Roy, and of other parts of Lochaber
17 18	395	in Scotland, with an attempt to prove that they are of marine origin', <i>Philosophical Transactions</i>
19	396	of the Royal Society 129 , 39-81.
20	397	DUNLOP, P. & CLARK, C. (2006a), 'Morphological characteristics of ribbed moraine', Quaternary
22 23	398	Science Reviews 25, 1668-1691.
24 25	399	DUNLOP, P. & CLARK, C. (2006b), 'Distribution of ribbed moraine in Lac Naococane region, central
26 27	400	Quebec, Canada', Journal of Maps v2006, 59-70.
28 29	401	DYKE, A. (1993), 'Landscapes of cold-centred Late Wisconsinan ice caps, Arctic Canada', Progress
30	402	in Physical Geography 17 , 223-247.
32	403	DYKE, A., MORRIS, T., GREEN, D. & ENGLAND, J. (1992), Quaternary geology of Prince of Wales
33 34	404	Island, Arctic Canada, Geological Survey of Canada Memoir 433, Geological Survey of
35 36	405	Canada
37 38	406	EVANS D (2005) Ice-marginal Terrestrial Landsystems: Active Temperate Glacier Margins In:
39 40	407	EVANS D ed <i>Glacial Landsystems</i> Holder London on 12-43
41	408	EVANS J & COX N (1974) 'Geomorphometry and the operational definition of circules' Area 6 150-
42 43	400	
44 45	409	TSS.
46 47	410	EVANS, I. (2006), Anometric development of glacial circle form. geological, relief and regional effects
48 ⊿q	411	on the circues of wales; <i>Geomorphology</i> 80 , 245-266.
50	412	EYLES, N., BOYCE, J. & BARENDREGT, R. (1999), Hummocky moraine: sedimentary record of
51 52	413	stagnant Laurentide Ice Sheet lobe resting on soft sediment', Sedimentary Geology 123, 163-
53 54	414	174.
55 56	415	FARR, T., ROSEN, P., CARO, E., CRIPPEN, R., DUREN, R., HENSLEY, S., KOBRICK, M., PALLER,
57 58	416	M., RODRIGUEZ, E., ROTH, L., SEAL, D., SHAFFER, S., SHIMADA, J., UMLAND, J.,
59 60		
nu		14

Journal of Maps

2	447	
3 4	417	WERNER, M., OSKIN, M., BURBANK, D. & ALSDORF, D. (2007), The Shuttle Radar
5	418	Topography Mission', <i>Reviews of Geophysics</i> 45 , RG2004.
6 7	419	FAY, H. (2002), Formation of kettle holes following a glacial-outburst flood (jökulhlaup),
8 9	420	Skeiðarársandur, southern Iceland, In: SNORRASSON, A., FINNSDOTTIR, H. & MOSS, M.,
10 11	421	ed., The Extremes of the Extremes: Extraordinary Floods, IAHS Publication, 271, IAHS Press,
12 13	422	Oxford, pp. 205-210.
14	423	FINLAYSON, A. (2006), 'Glacial geomorphology of the Creag Maegaidh Massif, western Grampian
16	424	Highlands: implications for local glaciation and palaeoclimate during the Loch Lomond Stadial',
17 18	425	Scottish Geographical Journal 122 , 239-307.
19 20	426	FINLAYSON, A., MERRITT, J., BROWNE, M., MERRITT, J., MCMILLAN, A. & WHITBREAD, K.
21 22	427	(2010), 'Ice sheet advance, dynamics, and decay configurations: evidence from west central
23 24	428	Scotland', Quaternary Science Reviews 29, 969-998.
25	429	FIRTH, C. (1989a), 'Late Devensian raised shorelines and ice limits in the inner Moray Firth area,
20	430	northern Scotland', <i>Boreas</i> 18, 5-21.
28 29	431	FIRTH, C. (1989b), 'A reappraisal of the supposed Ardersier Readvance, inner Moray Firth', Scottish
30 31	432	Journal of Geology 25, 249-261.
32 33	433	FLETCHER, T., AUTON, C., HIGHTON, A., MERRITT, J., ROBERTSON, S. & ROLLIN, K. (1996),
34 35	434	Geology of Fortrose and eastern Inverness District: Memoir for 1:50 000 Geological Sheet 84W
36 37	435	(Scotland), British Geological Survey, Keyworth, Nottingham, pp. 64-100.
38	436	GLASSER, N. & JANSSON, K. (2008), 'The Glacial Map of southern South America', Journal of Maps
40	437	v2008 , 175-196.
41 42	438	GOLLEDGE, N. (2006), 'The Loch Lomond Stadial glaciation south of Rannoch Moor: New evidence
43 44	439	and palaeoglaciological insights, Scottish', Geographical Journal 122 , 326-343.
45 46	440	GORDON, J. & MCEWEN, L. (1993), North Esk and West Water glaciofluvial landforms, In:
47 48	441	GORDON, J. & SUTHERLAND, D., ed., Quaternary of Scotland, Joint Nature Conservation
49 50	442	Committee, Chapman and Hall, London, pp. 499-501.
50 51	443	GORDON, J. (1993), Carstairs kames, In: GORDON, J. & SUTHERLAND, D., ed., Quaternary of
52	444	Scotland, Chapman and Hall, London, pp. 544-549.
54 55	445	GORDON, J. (2001), 'The corries of the Cairngorm Mountains', Scottish Geographical Journal 117,
56 57	446	49-62.
58 59		
60		15

3	447	GREENWOOD, S. & CLARK, C. (2008), 'Subglacial bedforms of the Irish Ice Sheet', Journal of Maps
4 5	448	v2008 , 332-357.
6 7	449	GREENWOOD, S., CLARK, C. & HUGHES, A. (2007), 'Formalising an inversion methodology for
8 9	450	reconstructing ice-sheet retreat patterns from meltwater channels: application to the British Ice
10 11	451	Sheet', Journal of Quaternary Science 22, 637-645.
12 13	452	HÄTTESTRAND, C. & KLEMAN, J. (1999), 'Ribbed moraine formation', Quaternary Science Reviews
14	453	18 , 43-61.
15 16	454	HÄTTESTRAND, C. & STROEVEN, A. (2002), 'A relict landscape in the centre of Fennoscandian
17 18	455	glaciation: Geomorphological evidence of minimal Quaternary glacial erosion', Geomorphology
19 20	456	44 , 127-143.
21 22	457	HÄTTESTRAND, C. (1998), 'The glacial geomorphology of central and northern Sweden', Sveriges
23 24	458	Geologiska Undersökning Ca 85, 1-47.
25 26	459	HUGHES, A., CLARK, C. & JORDAN, C. (2010), 'Subglacial bedforms of the last British Ice Sheet',
20	460	Journal of Maps v2010 , 543-563.
28 29	461	JANSSON, K., STOEVEN, A. & KLEMAN, J. (2003), 'Configuration and timing of Ungava Bay ice
30 31	462	streams, Labrador-Ungava, Canada', <i>Boreas</i> 32, 256-263.
32 33	463	KEY, R. (1997), Geology of the Glen Roy district: Memoir for 1:50 000 geological sheet 63W
34 35	464	(Scotland), British Geological Survey, Keyworth, Nottingham, pp. 96-104.
36 37	465	KLEMAN, J. & BORGSTRÖM, I. (1996), 'Reconstruction of Palaeo-ice sheets: The use of
38	466	geomorphological data', Earth Surface Processes and Landforms 21, 893-909.
40	467	KLEMAN, J., BORGSTRÖM, I., ROBERTSSON, AM. & LILLIESKÖLD, M. (1992), 'Morphology and
41 42	468	stratigraphy from several deglaciations in the Transtrand Mountains, western Sweden', Journal
43 44	469	of Quaternary Science 7, 1-17.
45 46	470	KLEMAN, J., HÄTTESTRAND, C., BORGSTRÖM, I. & STROEVEN, A. (1997), 'Fennoscandian
47 48	471	palaeoglaciology reconstructed using a glacial geological inversion model', Journal of
49	472	<i>Glaciology</i> 43 , 283–299.
50 51	473	KNIGHT, J. & MCCABE, M. (1997), 'Identification and significance of ice-flow-transverse subglacial
52 53	474	ridges (Rogen moraines) in northern central Ireland', Journal of Quaternary Science 12, 519-
54 55	475	524.
56 57 58	476	LIVINGSTONE, S., Ó COFAIGH, C. & EVANS, D. (2008), 'Glacial geomorphology of the central
59 60		16

Page 17 of 26

Journal of Maps

1		
2 3	477	sector of the last British-Irish Ice Sheet', Journal of Maps v2008, 358-377.
4 5	478	LUNDQVIST, J. (1989), 'Rogen (ribbed) moraine: identification and possible origin', Sedimentary
6 7	479	Geology 62 , 281-292.
8 9	480	MARGOLD, M. & JANSSON, K. (2012), 'Evaluation of data sources for mapping glacial meltwater
10 11	481	features', International Journal of Remote Sensing 33, 2355-2377.
12	482	MARGOLD, M., JANSSON, K., KLEMAN, J. & STROEVEN, A. (2011), 'Glacial meltwater landforms of
14	483	central British Colombia', Journal of Maps v2011, 486-506.
15	484	MAY, R. & HIGHTON, A. (1998), Memoir for 1:50 000 geological sheet 73W (Scotland), British
17 18	485	Geological Survey, Keyworth, Nottingham, chapter Geology of the Invermoriston district, pp.
19 20	486	59-62.
21 22	487	MCCANN, S. (1966), 'The limits of the Late-glacial Highland, or Loch Lomond, Readvance along the
23 24	488	West Highland seaboard from Oban to Mallaig', Scottish Journal of Geology 2, 84-95.
25	489	MERRITT, J., AUTON, C. & CALLUM, R. (1995), 'Ice-proximal glaciomarine sedimentation and sea-
20	490	level change in the Inverness area, Scotland: a review of the deglaciation of a major ice stream
28 29	491	of the British Late Devensian ice sheet', Quaternary Science Reviews 14, 289-329.
30 31	492	MITCHELL, W. & RILEY, J. (2006), 'Drumlin map of the Western Pennines and southern Vale of
32 33	493	Eden, Northern England, UK', Journal of Maps v2006, 10-16.
34 35	494	NYE, J. (1973), 'Water at the bed of a glacier', IASH Publication (Symposium at Cambridge 1969 –
36 37	495	Hydrology of Glaciers) 95 , 189-194.
38	496	PALMER, A., ROSE, J., LOWE, J. & MACLEOD, A. (2010), 'Annually resolved events of the Younger
39 40	497	Dryas glaciation in Lochaber (Glen Roy and Glen Spean), Western Scottish Highlands', Journal
41 42	498	of Quaternary Science 25, 581-596.
43 44	499	PEACOCK, J. (1971), 'Terminal features of the Creran Glacier of Loch Lomond Readvance age in
45 46	500	western Benderloch, Argyll, and their significance in the late-glacial history of the Loch Linnhe
47 48	501	area', Scottish Journal of Geology 7, 349-356.
49 50	502	PEACOCK, J., MENDUM, J. & FETTES, D. (1992), Geology of the Glen Affric district: Memoir for
50 51	503	1:50,000 geological sheet 72E (Scotland), British Geological Survey, Keyworth, Nottingham,
53	504	рр. 69-77.
54 55	505	RODRIGUEZ, E., MORRIS, C., BELZ, J., CHAPIN, E., MARTIN, J., DAFFER, W. & HENSLEY, S.
56 57	506	(2005), 'An assessment of the SRTM topographic products, Technical Report JPL D-31639',
58 59		
60		17

507	Technical report, Jet Propulsion Laboratory, Pasedina, California.
508	RUSSELL, A. & MARREN, P. (1998), 'A Younger Dryas (Loch Lomond Stadial) jökulhlaup deposit,
509	Fort Augustus, Scotland', Boreas 27, 231-242.
510	SEJRUP, H., HJELSTUEN, B., DAHGREN, K., HAFLIDASON, H., KUIJPERS, A., NYGÅRD, A.,
511	PRAEG, D., STOKER, M. & VORREN, T. (2005), 'Pleistocene glacial history of the NW
512	European continental margin', Marine and Petroleum Geology 22, 1111-1129.
513	SEJRUP, H., NYGÅRD, A., HALL, A. & HAFLIDASON, H. (2009), 'Middle and Late Weichselian
514	(Devensian) glaciation history of south-western Norway, North Sea and eastern UK',
515	Quaternary Science Reviews 28, 370-380.
516	SHARPE, D. & SHAW, J. (1989), 'Erosion of bedrock by subglacial meltwater, Cantley, Quebec',
517	Geological Society of America Bulletin 101 , 1011-1020.
518	SISSONS, J. & Cornish, R. (1982), 'Differential glacio-isostatic uplift of crustal blocks at Glen Roy,
519	Scotland', Quaternary Research 18, 268-288.
520	SISSONS, J. (1967), The Evolution of Scotland's Scenery, Oliver and Boyd, Edinburgh.
521	SISSONS, J. (1976), The Geomorphology of the British Isles: Scotland, Methuen and Co. Ltd.,
522	London.
523	SISSONS, J. (1977a), 'Former ice-dammed lakes in Glen Moriston, Inverness-shire, and their
524	significance in upland Britain', Transactions of the Institute of British Geographers New Series
525	2 , 224-242.
526	SISSONS, J. (1977b), The parallel roads of Glen Roy, Nature Conservancy Council, London.
527	SISSONS, J. (1978), 'The parallel roads of Glen Roy and adjacent glens, Scotland', Boreas 7, 229-
528	244.
529	SISSONS, J. (1979a), 'The Loch Lomond Stadial in the British Isles', Nature 280, 199-203.
530	SISSONS, J. (1979b), 'Catastrophic lake drainage in Glen Spean and the Great Glen, Scotland',
531	Journal of the Geological Society of London 139 , 215-224.
532	SISSONS, J. (1979c), 'The limit of the Loch Lomond Advance in Glen Roy and vicinity', Scottish
533	Journal of Geology 15 , 31-42.
534	SMITH, M. & CLARK, C. (2005), 'Methods for the visualization of digital elevation models for landform
535	mapping', Earth Surface Processes and Landforms 30, 885-900.
536	SMITH, M., ROSE, J. & BOOTH, S. (2006), 'Geomorphological mapping of glacial landforms from
	19

//ma.manucarintaantral Page 19 of 26

Journal of Maps

2 3	537	remotely sensed data: An evaluation of the principal data sources and an assessment of their					
4 5	538	quality', Geomorphology 76, 148-165.					
6 7	539	SOLLID, J. & SØRBEL, L. (1994), 'Distribution of glacial landforms in Southern Norway in relation to					
8 9 10 11 12 13 14 15 16 17 18	540	the thermal regime of the last continental ice sheet', Geografiska Annaler 76 A, 25-35.					
	541	SPAGNOLO, M. & CLARK, C. (2009), 'A geomorphological overview of glacial landforms on the					
	542	Icelandic continental shelf, Journal of Maps v2009, 37-52.					
	543	SUGDEN, D., DENTON, G. & MARCHANT, D. (1991), 'Subglacial Meltwater Channel Systems and					
	544	Ice Sheet Overriding, Asgard Range, Antarctica', Geografiska Annaler 73 A , 109-121.					
	545	THORP, P. (1986), 'A mountain ice field of Loch Lomond Stadial age, western Grampians, Scotland',					
19 20	546	Boreas 15, 83-97.					
21 22	547	TURNER, A., WOODWARD, J., DUNNING, S., SHINE, A., STOKES, C. & Ó COFAIGH, C. (2012),					
23	548	'Geophysical surveys of the sediments of Loch Ness, Scotland: implications for the deglaciation					
24 25 26 27 28 29	549	of the Moray Firth Ice Stream, British-Irish Ice Sheet', Journal of Quaternary Science 27, 221-					
	550	232.					
	551	TURNER, A., WOODWARD, J., DUNNING, S., SHINE, A., STOKES, C. & Ó COFAIGH, C. (2013a).					
30 31	552	'The deglaciation of the Great Glen based on the results of geophysical surveys within Loch					
32 33	553	Ness'. In: Boston, C.M., Lukas, S. and Merritt, J.W. (eds.). The Quaternary of the Monadhliath					
34 35	554	Mountains and Great Glen, Field Guide. Quaternary Research Association, London, pp. 83-88.					
36	555	TURNER, A., WOODWARD, J., DUNNING, S., SHINE, A., STOKES, C. & Ó COFAIGH, C. (2013b).					
38	556	'Evidence from geophysical surveys for Younger Dryas (jökulhlaup) sedimentation within Loch					
39 40	557	Ness'. In: Boston, C.M., Lukas, S. and Merritt, J.W. (eds.). The Quaternary of the Monadhliath					
41 42	558	Mountains and Great Glen, Field Guide. Quaternary Research Association, London, pp. 89-92.					
43 44	559	YOUNG, J. (1978), 'The landforms of the upper Strathspey, Scottish Geographical Magazine',					
45 46	560	Scottish Geographical Magazine 94 , 76-94.					
47 48 49 50 51 52 53	561 562						

563 9. Tables

Table 1 – Statistical properties calculated for glacial landforms.¹ 565

Glacial Landform	N	Mean Length (m)	Mean Width (m)	L/W Ratio	Mean Orientation (°)	Mean Area (km²)
Cirques	277	1155 ± 811	1038 ± 553	1.4:1	89.2 ± 50.98	1.42 ± 1.78
Arêtes	77	1804 ± 1462	-	-	-	-
Eskers	553	222 ± 202	-	-	65.2 ± 45.0	-
Glacial Lineations	1977	290 ± 377	158 ± 132	4.2:1	47.9 ± 23.9	0.13 ± 0.26
Crag & Tail	314	482 ± 400	111 ± 82	4.4:1	49.1 ± 37.5	0.5 ± 0.09
Drumlins	181	778 ± 750	189 ± 154	3.9:1	46.4 ± 22.2	0.18 ± 0.33
Streamlined Bedrock	1482	268 ± 260	55 ± 35	5.0:1	47.4 ± 18.2	0.01 ± 0.07
Kames	387	-	-	-	_	-
Kame & Kettle	337	-	-	-	-	-
Kame Terraces	50	355 ± 252	-	-	76.6 ± 34.5	-
Meltwater Channels	4117	413 ± 347	-	-	74.7 ± 46.2	-
Lateral	2468	310 ± 293	-	-	76.8 ± 46.3	-
Sublateral	221	377 ± 323	-	-	94.2 ± 49.4	-
Subglacial	1418	560 ± 413	-	-	68.0 ± 44.3	-
Proglacial	3	229 ± 68	-	-	112.9 ± 7.8	-
Over-col	7	858 ± 449	-	-	58.6 ± 50.1	-
Moraines	10227	116 ± 114	-	-	90.0 ± 52.3	-
Transverse	3397	128 ± 107	-	-	98.8 ± 55.6	-
Longitudinal	3478	149 ± 143	-	-	77.8 ± 46.5	-
Hummocky	3077	62 ± 45	-	-	-	-
Ribbed	275	243 ± 180		-	105.9 ± 64.3	-

¹ Standard deviations (±) are derived from the square root of the variance within each landform population.

Page 21 of 26

Figure 1 – Map to show locations described in the text with figure extents. CF = Cromarty Firth; MF = Moray
Firth; LU = Loch Ussie; SP = Strathpeffer; IF = Inverness Firth; SC = Strathconnon; BF = Beauly Firth; I =
Inverness; L = Lochend; D = Dores; LD = Loch Duntelchaig; RC = River Clava; UB = Urquhart Bay; SF =
Strathfarrar; LM = Loch Mullardoch; GA = Glen Affric; GU = Glen Urquhart; LN = Loch Ness; SE =
Stratherrick; RF = River Findhorn; Laf = Loch Affric; GD = Glen Doe; GM = Glen Moriston; FA = Fort
Augustus; AT = Auchteraw Terrace; LC = Loch Cluanie; LQ = Loch Quioch; Lloy = Loch Loyne; Gar = Glen
Garry; LG = Loch Garry; LO = Loch Oich; GT = Glen Turret; GR = Glen Roy; Ggl = Glen Gloy; LA = Loch
Arkaig; LL = Loch Lochy; La = Loch Laggan; SS = Strathspey; LS = Loch Shiel; LE = Loch Eil; Lab = Loch
Aber; FW = Fort William; BN = Ben Nevis; BNM = Ben Nevis Mountain Range; LT = Loch Treig; SO =
Strathossian; Los = Loch Ossian; Ler = Loch Ericht; BW = Blackwater Reservoir; RM = Rannoch Moor; Lai =
Loch Laidon; LB = Loch Ba.

Figure 2 – a) Map data showing glacial valleys surrounding the peak of Mullach nan Coirean, Ben Nevis Mountains. b) Interpreted image with cirque and arête features identified in green. c) Streamlined landforms found on the high ground to the west of Loch Ness. d) Interpreted image with crag and tails (yellow) and streamlined bedrock (red) identified. e) Extract from south of the Beauly Firth (BF). f) Interpreted image with drumlins identified in purple. LB = Loch Bruicheach.

Figure 3 – a) NextMap data showing a field of ridges perpendicular to the long axis of Blackwater Reservoir.
b) Interpreted image with transverse moraines identified. c) NextMap data showing ridges aligned parallel to the valley long axis in proximity to Loch Ossian, cross-cut by a modern railway line and coming into contact with valley slopes. d) Interpreted image with longitudinal moraines identified. e) NextMap image showing ridges with an anastomosing pattern from Cromarty Firth. f) Interpreted image with ribbed moraine identified and associated with a palaeo-shoreline mapped by Firth (1989a). g) NextMap data from Rannoch Moor showing a field of chaotically distributed mounds. h) Interpreted image with hummocky moraine identified; no clear linear trends exist. Ice flow directions are indicated. See figure 1 for locations.

Figure 4 – a) NextMap data showing chaotic surface morphology north of Newtonmore. b) Interpreted image with kame and kettle topography identified. c) NextMap data showing linear terraces aligned parallel to the valley axis in Glen Moriston. d) Interpreted image with kame terraces identified. e) NextMap image showing numerous channelised features around Leum Uilleim, Rannoch Moor. f) Interpreted image with lateral, sublateral, subglacial and over-col spillways identified. g) NextMap data from western Strathspey showing a field of sinuous, sharp crested ridges. h) Interpreted image with eskers identified. See figure 1 for locations.

Figure 5 – Reconstruction of the waning stages of ice dammed lake development based on shorelines mapped in this study and before complete drainage. a) Glen Doe 510 m; b) Glen Doe 406 m; c) Glen Doe 359 m; d) Glen Doe 334 m; e) Glen Doe 324 m; f) Glen Doe 305 m; g) Glen Gloy 355 m maximum extent; h) Glen Gloy 355 m minimum extent; i) Glen Roy 350 m and Glen Spean 260 m; j) Glen Roy 325 m and Glen Spean 260 m; k) Spean/Roy 260 m. Drainage has been interpreted to be via a series of outburst floods (jökulhlaups) (Sissons, 1977a; 1979b). Dashed lines indicate ice margins.

URL: http://mc.manuscriptcentral.com/tjom

Page 26 of 26

Above: Inset showing major retreat configurations of the former British-Irish Ice Sheet with the current study area in context. Numbered retreats are interpreted from Merritt et al. (1995).

Below: Inset showing Shuttle Radar Topography Mission (SRTM) 90 m resolution DEM of the Great Glen and surrounding regions.

© Journal of Maps, 2013