95 research outputs found

    Strong and Tough Silk for Resilient Attachment Discs: The Mechanical Properties of Piriform Silk in the Spider Cupiennius salei (Keyserling, 1877)

    Get PDF
    Spiders are able to produce different types of silk with different mechanical and biological properties. Piriform silk is produced to secure spiders and their webs to surfaces by using a nano-fibril network embedded in a cement-like matrix. Despite their fundamental role, the mechanical properties and function of these anchorages are still poorly understood due to the practical difficulties in nano-fibril sample preparation, the complexity of the system, and the high variation of attachment disc structures. Here we estimated the mechanical properties of this nano-fibril silk and those of the whole silk membrane in the large wandering spider Cupiennius salei through a combination of nanoindentation and nanotensile techniques and with the support of a simple analytical model. The results highlight the mechanical properties of the piriform silk, facilitating the modeling of silk composite mechanics. This could inspire the design of more efficient bio-inspired adhesives and fabrics

    Organic salt composition of pressure sensitive adhesives produced by spiders

    Get PDF
    Natural glues offer great potential as bio-inspired solutions to problems associated with the performance of synthetic adhesives. Spider viscous glues are elastic pressure sensitive adhesives (PSAs) that physically adhere to surfaces on contact across a range of environmental conditions. Extracting useful components from these secretions remains a challenge that can be met by the comparative analyses of functional analogues. Here we used 1H NMR spectroscopy and mass spectrometry to ascertain the organic salt compositions of the PSAs of four different species of Australian spiders belonging to two lineages that independently acquired aqueous gluey secretions: the St Andrew’s cross (Argiope keyserlingi), the redback (Latrodectus hasselti), the false widow (Steatoda grossa), and the daddy long-legs spider (Pholcus phalangiodes). The PSAs from each of these spiders contained similar organic salts, albeit in variable concentrations. The adhesives of the false widow and daddy long-legs spider had mixtures of only a few components, of which betaine predominated, while the PSAs of the other spiders predominantly contained small organic acids such as GABA/GABA-amide, isethionate, and choline salts. Our results suggest that the PSA composition of spiders is likely to be influenced more by environmental factors than evolutionary history and are guided by common principles. Our findings could be valuable for facilitating the design of more sustainable synthetic glues

    Geometric regularity in webs of non‐orb‐weaving spiders

    Get PDF
    Geometric regularity of spider webs has been intensively studied in orb-weaving spiders, although it is not exclusive of orb weavers. Here, we document the geometrically regular, repetitive elements in the webs of the non-orb-weaving groups Leptonetidae and Telemidae for the first time. Similar to orb weavers, we found areas with regularly spaced parallel lines in the webs of Calileptoneta helferi, Sulcia sp., and cf. Pinelema sp. Furthermore, we provide a detailed account of the regular webs of Ochyrocera (Ochyroceratidae). The sections of the web with regularly disposed parallel lines are built as U-shaped modules reminiscent of orb webs. It has been suggested that the regularly spaced parallel lines in the webs of Ochyroceratidae and Psilodercidae may be produced in a single sweep of their posterior lateral spinnerets, which have regularly spaced aciniform gland spigots, perhaps involving expansion of the spinnerets. To test this hypothesis, we compared the spacing between parallel lines with the spacing between spigots, searched for expansible membranes in the spinnerets, and examined the junctions of regularly spaced lines. The distance between parallel lines was 10–20 times the distance between spigots, and we found no expansible membranes, and the intersection of parallel lines are cemented, which opposes the single sweep hypothesis. Furthermore, we found cues of viscid silk in the parallel lines of the psilodercid Althepus and broadened piriform gland spigots that may be responsible of its production. Finally, we evaluated the presence or absence of geometrically regular web elements across the spider tree of life. We found reports of regular webs in 31 spider families, including 20 families that are not orb weavers and hypothesize that the two basic aspects of regularity (parallel lines spaced at regular intervals, and radial lines spaced at regular angles) probably appeared many times in the evolution of spiders

    Towards establishment of a centralized spider traits database

    Get PDF
    A main goal of ecological and evolutionary biology is understanding and predicting interactions between populations and both abiotic and biotic environments, the spatial and temporal variation of these interactions, and the effects on population dynamics and performance. Trait-based approaches can help to model these interactions and generate a comprehensive understanding of ecosystem functioning. A central tool is the collation of databases that include species trait information. Such centralized databases have been set up for a number of organismal groups but is lacking for one of the most important groups of predators in terrestrial ecosystems - spiders. Here we promote the collation of an open spider traits database, integrated into the global Open Traits Network. We explore the current collation of spider data and cover the logistics of setting up a global database, including which traits to include, the source of data, how to input data, database governance, geographic cover, accessibility, quality control and how to make the database sustainable long-term. Finally, we explore the scope of research questions that could be investigated using a global spider traits database.Peer reviewe

    The World Spider Trait database : a centralised global open repository for curated data on spider traits

    Get PDF
    Publisher Copyright: © The Author(s) 2021. Published by Oxford University Press.Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology. Database URL:https://spidertraits.sci.muni.cz/.Peer reviewe

    The World Spider Trait database: a centralized global open repository for curated data on spider traits

    Get PDF
    Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology.Fil: PekĂĄr, Stano. Masaryk University; RepĂșblica ChecaFil: Wolff, Jonas O. University of Greifswald; AlemaniaFil: CerneckĂĄ, L'udmila. Slovak Academy of Sciences; ArgentinaFil: Birkhofer, Klaus. Brandenburgische Technische UniversitĂ€t Cottbus; AlemaniaFil: Mammola, Stefano. University of Helsinki; FinlandiaFil: Lowe, Elizabeth C.. Macquarie University; AustraliaFil: Fukushima, Caroline S.. University of Helsinki; FinlandiaFil: Herberstein, Marie E.. Macquarie University; AustraliaFil: Kucera, Adam. Masaryk University; RepĂșblica ChecaFil: Buzatto, Bruno A.. University of Western Australia; AustraliaFil: Djoudi, El Aziz. Brandenburgische Technische UniversitĂ€t Cottbus; AlemaniaFil: Domenech, Marc. Universidad de Barcelona; EspañaFil: Enciso, Alison Vanesa. FundaciĂłn Protectora Ambiental Planadas Tolima; ColombiaFil: Piñanez Espejo, Yolanda MarĂ­a Guadalupe. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Posadas; ArgentinaFil: Febles, Sara. No especifĂ­ca;Fil: GarcĂ­a, Luis F. Universidad de la RepĂșblica; UruguayFil: Gonçalves Souza, Thiago. Universidad Federal Rural Pernambuco; BrasilFil: Isaia, Marco. UniversitĂ  di Torino; ItaliaFil: Lafage, Denis. Universite de Rennes I; FranciaFil: LĂ­znarovĂĄ, Eva. Masaryk University; RepĂșblica ChecaFil: MacĂ­as HernĂĄndez, Nuria. Universidad de La Laguna; EspañaFil: Fiorini de Magalhaes, Ivan Luiz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Malumbres Olarte, Jagoba. Universidade Dos Açores; PortugalFil: MichĂĄlek, Ondrej. Masaryk University; RepĂșblica ChecaFil: Michalik, Peter. ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD (UG);Fil: Michalko, Radek. No especifĂ­ca;Fil: Milano, Filippo. UniversitĂ  di Torino; ItaliaFil: MunĂ©var, Ana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Puerto IguazĂș | Universidad Nacional de Misiones. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Puerto IguazĂș; ArgentinaFil: Nentwig, Wolfgang. University of Bern; SuizaFil: Nicolosi, Giuseppe. UniversitĂ  di Torino; ItaliaFil: Painting, Christina J. No especifĂ­ca;Fil: PĂ©tillon, Julien. Universite de Rennes I; FranciaFil: Piano, Elena. UniversitĂ  di Torino; ItaliaFil: Privet, KaĂŻna. Universite de Rennes I; FranciaFil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Ramos, CĂąndida. No especifĂ­ca;Fil: RezĂĄc, Milan. No especifĂ­ca;Fil: Ridel, AurĂ©lien. Universite de Rennes I; FranciaFil: Ruzicka, Vlastimil. No especifĂ­ca;Fil: Santos, Irene. No especifĂ­ca;Fil: SentenskĂĄ, Lenka. Masaryk University; RepĂșblica ChecaFil: Walker, Leilani. No especifĂ­ca;Fil: Wierucka, Kaja. Universitat Zurich; SuizaFil: Zurita, Gustavo Andres. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Posadas; ArgentinaFil: Cardoso, Pedro. No especifĂ­ca

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI

    Get PDF

    The Evolution of Dragline Initiation in Spiders: Multiple Transitions from Multi- to Single-Gland Usage

    No full text
    Despite the recognition of spider silk as a biological super-material and its dominant role in various aspects of a spider’s life, knowledge on silk use and silk properties is incomplete. This is a major impediment for the general understanding of spider ecology, spider silk evolution and biomaterial prospecting. In particular, the biological role of different types of silk glands is largely unexplored. Here, I report the results from a comparative study of spinneret usage during silk anchor and dragline spinning. I found that the use of both anterior lateral spinnerets (ALS) and posterior median spinnerets (PMS) is the plesiomorphic state of silk anchor and dragline spinning in the Araneomorphae, with transitions to ALS-only use in the Araneoidea and some smaller lineages scattered across the spider tree of life. Opposing the reduction to using a single spinneret pair, few taxa have switched to using all ALS, PMS and the posterior lateral spinnerets (PLS) for silk anchor and dragline formation. Silk fibres from the used spinnerets (major ampullate, minor ampullate and aciniform silk) were generally bundled in draglines after the completion of silk anchor spinning. Araneoid spiders were highly distinct from most other spiders in their draglines, being composed of major ampullate silk only. This indicates that major ampullate silk properties reported from comparative measurements of draglines should be handled with care. These observations call for a closer investigation of the function of different silk glands in spiders
    • 

    corecore